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Main topics of the week: 
- Math Review  
- Finite State Machine Diagrams 
- Formal Definition of Deterministic Finite Automaton 
- Formal Definition of computation of a DFA 
- Language recognized by a DFA 
- Constructing DFAs for a language 

 
Examples from class not in Sipser: 
 
Example of a DFA: Suppose we have a vending machine that dispenses a can of soda 
when we deposit 25 cents. The coins we may insert are nickels, dimes and quarters, and 
the machine will count to see when we reach 25 cents. In our simple model of this 
machine, no change will be given, and the machine will keep any extra money. The state 
diagram of the machine looks like this: 

 
We have omitted the arrows for coin combinations that total more than 25 cents, but they 
could be added for each state, with all of them terminating in the accept state. Also, we 
could add arrows for inputs other than nickels, dimes, and quarters (call them all slugs). 
The arrows for such input in each state would loop back to the same state. 
The formal definition of this machine would be given as the 5-tuple (Q, Σ, δ, 0, {25}) 
where 

1) Q = {0,5,10,15,20,25} 
2) Σ = {n,d,q,s} 
3) δ is given by  

 n d q s 
0 5 10 25 0 
5 10 15 25 5 
10 15 20 25 10 
15 20 25 25 15 
20 25 25 25 20 
25 25 25 25 25 
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Example from class of an automaton to recognize two consecutive a’s: 

 
And its complement: 

 
 
 
Another example from class. What strings does this FSD recognize? 

 
 
Suppose we think about its 
complement. That would be all 
strings that begin with an a and 
have alternating a’s and b’s. So 
this machine recognizes all the 
other strings, i.e., strings that 
begin with a b or have two 
consecutive a’s or b’s. 
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Another example: 

 
In this example, we go separate paths from the start state depending on whether we start 
with an a or b. In the top case, we get to the accept state after another a, but return to q1 if 
we see another a. We are basically ignoring all b’s. If you think about what is happening, 
you’ll realize that we end up in the accept state along the top path only when we see an 
even number of a’s. Likewise, in the bottom path, we accept only an even number of b’s. 
So we could describe this machine as accepting strings that have an even number of 
occurrences of the first character. Note this is different from the machine that would 
accept any string with an even number of a’s or an even number of b’s. What would that 
FSD look like? 
 
Constructing DFAs: Design an automaton that accepts the language over {a, b, c} that 
has three consecutive b’s. As we think about this, we realize we need to count the number 
of b’s that we see in a row. We could have none, one, two, or three. In any of these cases, 
seeing a b takes us to the next state (but not beyond three). Seeing either a or c causes us 
to reset to the none state. Seeing anything once we have seen three b’s doesn’t change 
anything since we only care about finding at least three consecutive b’s. So we have a 
machine with four states, and have described all transitions. The last state is the one and 
only accept state, and the first state is the start state. In a diagram, we have: 

 

  s 

 q1 

 r2 

b 

b 

a 

a 

 r1 

 q2 

b 

a 

a 

b 

a 

b 

Another mystery 

 

qnone qone qtwo qthree 
b b b 

a,c a,c 

a,b,c 

3 consecutive b’s 



Deterministic Finite Automata Week 1 Selected Lecture Notes 

Atkins – Spring 2002 CIS 420/520 Automata Theory -4- 

 
 Another example of a construction is to come up with a DFA to recognize all strings 
that contain an even number of a’s or an even number of b’s, or even numbers of both. 
We can approach this in a similar way, beginning with a state qEaEb representing the 
starting condition of zero a’s and zero b’s, hence even counts of each. From this state, an 
input of a will change the count of a’s to be odd, but leave b’s the same. Likewise, an 
input of b will only affect the parity of the b count. So this leads us to need two more 
states, qOaEb and qEaOb for odd a’s/even b’s and even a’s/odd b’s respectively. As we fill in 
the transitions for the DFA, we see that we need yet another state for odd a’s/odd b’s. 
These four states turn out to be enough as the following diagram shows: 
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