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Main topics of the week: 
- Review problems for midterm 

 
Problem: Let A = { w | w contains an equal number of occurrences of the substrings 01 
and 10}. Note that 101 ∈ A since it has a single 01 and a single 10, but 
1010 ∉ A since it has two 10s, but only one 01. Show that A is a regular language. 
 
Proof: When you think about counting occurrences of 01 and 10 in strings, the presence 
of consecutive 1s and 0s does not affect the counting. That is, 0111100001 is equivalent 
to 0101 for the purposes of counting these substrings. Looking at it this way, we see that 
we are reducing to alternating 0s and 1s, and for the counts to be the same, the string 
must begin and end with the same symbol. So we really have the language described as 
beginning and ending with the same symbol, which is just the regular expression 
0Σ*0∪1Σ*1, hence this is a regular language. 
 
Problem: Let A be a regular language over the alphabet Σ. Show that B = { x | x = yz for  
some y ∈ A and some string z ∈ Σ*} is a regular language. 
 
Proof: Let R be a regular expression that describes A. Then RΣ* is a regular expression 
describing B. Alternatively, given an NFA for A, construct an NFA for B by adding a 
new accept state with ε transitions from the original accept states, and a loop for all 
symbols in Σ. 

 
Problem: Let A be the language {aibjak |  k > i + j}. Prove that A is not regular. 
 
Proof: Suppose that A is regular and let p be the value guaranteed by the pumping 
lemma. Consider the string apbap+2 ∈ A. When realized as xyz, where |xy| ≤ p and |y| > 0, 
we see that y must be of the form ak for some k > 0. Then xyyz would look like ap+kbap+2, 
and since k ≥ 1, p+k+1 cannot be strictly less than p+2, meaning that xyyz is not in the 
language, so A cannot be regular. 
 
Problem: Let A be the language { (ab)nak | n > k and k ≥ 0 }. Prove that A is not regular. 
 
Proof: Suppose that A is regular and let p be the pumping length. Consider the string 
(ab)p+1ap ∈ A. Take any decomposition as xyz with |xy| ≤ p and  
|y| > 0. Then we know that z ends with (ab)ap. If y contains a b, then xz will have at most 
p b’s, so cannot be in A. Likewise, if y contains an a, then xz will have at most p a’s 
before the last b, so again cannot be in the language. Thus A cannot be regular. 
 
Problem: Prove that the intersection of two regular languages is a regular language. 
 
Proof: Let MA=(QA, Σ, δA, qA, FA)  and MB=(QB, Σ, δB, qB, FB) be DFAs recognizing two 
regular languages A and B. Construct the DFA N = (QB × QB, Σ, δ, (qA,qB), FA× FB) 
where δ((p,q), a) = (δA(p,a), δB(q,b)). If a string x is in A ∩ B, then there is a computation 
sequence in MA and also one in MB. These two computation sequences describe a 
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computation sequence in N leading to an accept state in N comprised of accept states 
from MA and MB. Conversely, an accepting computation sequence in N describes 
accepting computation sequences in both MA and MB. This is just like the construction of 
DFAs to show the union of regular languages is regular except that the accept states in 
the construction here require both elements of the pair of states to be accepting states for 
their respective machines. Alternatively, A ∩ B = ~~(A ∩ B) = ~(~A ∪ ~B), a regular 
language since the complement of a regular language is regular as well as the union of 
two regular languages. 

 
Problem: An All-Paths-NFA is a 5-tuple (Q, Σ, δ, q0, F) like an NFA except that this 
automaton accepts a string if every possible computation of the string ends in an accept 
state. (Recall that in a regular NFA, if some computation ends in an accept state, then the 
string is accepted.)  Prove that a language is regular if and only if it is recognized by an 
All-Paths-NFA. 
 
Proof: If a language is regular, it is recognized by a DFA. Clearly, any DFA is also an 
All-Paths-NFA since in a DFA, a string has a unique computation sequence. For the other 
direction, given an All-Paths-NFA we will construct an equivalent DFA, using almost the 
same construction used to find an equivalent DFA for an NFA. Let P = (Q, Σ, δ, q0, F) be 
the All-Paths-NFA. Then the constructed DFA M = (2Q, Σ, δ’, E({q0}), 2F) recognizes the 
same language. This is just like the construction used to find an equivalent DFA for a 
given NFA except for the way the accept states are defined. The states of M are the 
subsets of Q, the start state is the ε closure of the start state of P, and the accept states of 
M are all the subsets of F. The transition function δ’ is defined as δ’(R, a) = { q | q ∈ 
E(δ(r, a)) for some r ∈ R}. If a string s is accepted by P, then all paths through P result in 
acceptance. Thus s will be accepted by M since M was constructed to follow the paths of 
P, and so all of these paths resulting in accept states of P does constitute an accept state of 
M. Conversely, since the accept states of M consist only of accept states of P, all paths in 
P for an M-accepted string are accepting paths in P. Alternatively, we could define the 
NFA N to just be P with the accept and non-accept states reversed. Then because of the 
all paths property, N recognizes the complement of the language recognized by P. But 
since the complement of a regular language is regular, this means the language 
recognized by P is regular. 


