
Turing Machines Week 8 Selected Lecture Notes

Atkins – Spring 2002 CIS 420/520 Automata Theory -1-

Main topics of the week:
- Formal Definition of Turing Machine
- Computation of Turing Machine
- Examples of Turing Machines

Computation in a Turing Machine.

To be able to formally define computation in a Turing Machine, we must have the
notion of a configuration of the machine. A configuration consists of the state, the tape
contents, and the head location. A single step according to the transition function of the
machine will bring us to another configuration. The starting configuration consists of the
start state, the tape with the input on it, and head location on the first cell of the tape. A
configuration can be specified as a string over the tape alphabet, with a state appearing
somewhere in the string. This captures the idea of the tape contents, the state, and the
head position is the symbol immediately after the state as it appears in the string. The
following diagram shows one configuration that yields another, i.e., is achieved by a
transition step.

With this idea of configurations and yielding, we can more formally state that a

Turing Machine M accepts input w if there is a sequence C1,C2,…,Ck of configurations
where

1. C1 is the start configuration of M on input w,
2. Ci yields Ci+1 for 1≤ i < k,
3. Ck is an accepting configuration (the state is qaccept).

Likewise, we can define reject. Note that accepting and rejecting configurations are
halting configurations , so cannot yield another configuration.
 In previous automata, we thought of the machines as being driven by the input,
reading characters one at a time, and deciding what to do based on the transition function.
The difference with Turing Machines is that the “input” all appears on the tape at the
start, and we have the head positioned at the first character and use the transition function

 u a b v V V …

 qi

 u a c v V V …

 qj

uaqibv yields uqjacv

δ(qi,b) = (qj,c,L)

Turing Machines Week 8 Selected Lecture Notes

Atkins – Spring 2002 CIS 420/520 Automata Theory -2-

to decide what to do next. But after that start state, there is not really a concept of reading
the input unless the machine is designed that way – that is, the actions are governed not
so much by what is the next character, but what is the character under the head. And
since the head can move left or right, it might not be what we think of as the next input
character as we have been doing. And especially since the character can be overwritten,
we can’t keep thinking of it as the input character. It’s just the tape, with an initial
character configuration on it.

Example of a Turing Machine.
 Consider a Turing Machine that accepts the language {anbncn | n ≥ 0}. We have seen
that this is not a context free language, so know that we cannot design a PDA to
recognize it. The informal description of the TM is:

1) If no unmarked symbols, accept, otherwise mark an a.
2) If no a, reject, otherwise skip to next b and mark it.
3) If no b, reject, otherwise skip to next c and mark it.
4) If no c, reject, otherwise rewind and go to step 1.

 In the diagram we have not included the reject state, but assume that any unspecified
transition leads to it.

 Notice that we use the tape alphabet character ‘x’ to mark off matched b’s and c’s.
We use V to mark a’s and this also serves to allow us to rewind to the beginning. When
we are at the start state, we skip over any x’s, and if we read a V, then we accept since we
must have matched everything. If we see an ‘a’, we mark it with V and skip over
subsequent a’s. Then we mark a ‘b’ with ‘x’ and skip over subsequent b’s. Then we mark

qaccept

{anbncn | n ≥ 0}

a→R

V→R
end of tape, all
 matched

a→V,R

b→x,R

V→R

b,x→R

c→R
c→x,R

V→L
a,b,c,x→L
rewind

x→R
skip over already
marked

mark
matching b,
then c

reject if b or c

reject if out
of sequence
or no match

mark a

Turing Machines Week 8 Selected Lecture Notes

Atkins – Spring 2002 CIS 420/520 Automata Theory -3-

a ‘c’ with ‘x’ and skip over further c’s, stopping when we get to a V. At this point, we
rewind back till we encounter a V, which must have been one of the a’s marked off. The
cycle thus repeats. There are lots of places to reject in this machine: we might not see an
‘a’ from the start state, or we might see an ‘a’ or ‘c’ when looking for a ‘b’, and so on.

 Turing Machines may also be viewed as a way of performing what we typically think
of as computation, rather than just accepting or rejecting strings (although recognizing a
language in the formal sense we have seen is completely equivalent to any computational
problem). But seeing how we could perform an arithmetic computation shows how
similar Turing Machines are to the familiar notion of programming on computers. In this
example, we omit the accept and reject states because all we care about is how the tape
looks when we halt. That is, the “computation” is to consider how the machine
transforms the input string on the tape.
 The example here computes the difference between two numbers m and n, or zero if n
exceeds m. We use unary representation of numbers, that is, m will be represented by a
string of m zeroes, and n will be represented by a string of n zeroes. Likewise, our result
will be similarly represented, and we will use 1s to separate the values. So the tape will
begin with the string 0m10n. If we get the transitions right, the machine will halt with the
tape having the string 0m~n, where m~n is the difference or zero, whichever is greater
(formally called the monus operation).
 We start by replacing the initial 0 by a blank so we can find the beginning of the tape
again. Then we move to find the separating 1 and change the zero that follows it to a 1.
Then we rewind to the beginning zero and repeat. Basically, we’re replacing the 0s in m
by blanks, and replacing the corresponding 0s in n by 1s. If we run out of 0s in n, then we
back up, replacing 1s by blanks. and replace one 0 by a blank. So, we have blanked out n
0s from the m string, and blanked out all of n’s 0s. We adjust for the initial blanking of a
zero from m by resetting one blank back to a zero. If, on the other hand, we run out of 0s
in m, then we blank out everything, which indicates a result of zero.

Turing Machines Week 8 Selected Lecture Notes

Atkins – Spring 2002 CIS 420/520 Automata Theory -4-

 You can consider the various places where the machine halts, e.g., if the input is not
of the required form. In these cases, we assume a transition to a reject state. Otherwise,
the machine will end in the accept state, and the tape will be left recording the desired
result.

q1 q3

q4

q2

q5

0,1→L

Compute max(m-n,0)

1→R

0→1,L V→R

0→R

0→V,R 1→R

V→L

0→L
1→V,L

V→0,R

1→V,R

V→R qaccept q6

0→V,R
1→V,R

