
Decidability Week 10 Selected Lecture Notes

Atkins – Winter 2002 CIS 420/520 Automata Theory -1-

Main topics of the week:
- Countable and uncountable sets
- Diagonalization proof of uncountable
- Undecidable halting problem ATM
- Complement of ATM is not even Turing recognizable
- Review for final

Review problems for final.

 Let G be the grammar S → aS | aA | a
 A → aAb | ab
 Give a concise description of L(G) and a PDA to accept L(G).
 We observe that the symbol A generates anbn for all n ≥ 1. The rules for S using aA
and a simply add another ‘a’ in front, so that gives us strings of the form aanbn for all n≥0.
The rule aS for S allows an arbitrary number of a’s to be added at the beginning, so L(G)
= { ambn | m > n ≥ 0}.

 Show that the C programming language is not a context free language.
 Proof: Suppose that C is a CFL. By the pumping lemma for CFLs, there must be a
pumping length p. Consider the legal C program:
 f(){int aa…a;aa…a;aa…a;}
In this program, the variable is ap, i.e., the symbol ‘a’ repeated p times. Suppose we
realize this string as uvxyz, where |vxy| ≤ p. If vy contains the blank or any of the
symbols preceding it, then we certainly have a syntax error in uxz or at least an
undeclared variable. If vy contains the last semi-colon or closing brace, then again uxz
will have a syntax error. So vxy must be between the space and the last semi-colon. If vy
contains a semi-colon and possibly some characters before and after, again uxz will have
an undeclared variable since one set of the a’s will combine to be at least p+1 a’s while
the other stays the same. If vxy contains no semi-colon, then uvvxyyz will have a second
identifier, so again the program will not be legal since something will be undeclared. This
exhausts all the possibilities; so legal C programs are not a context free language.

 a, ε→ $ b, a→ ε b, $→ ε

b, a→ ε

a, ε → a

Decidability Week 10 Selected Lecture Notes

Atkins – Winter 2002 CIS 420/520 Automata Theory -2-

 Let A = {<R,S> | R and S are regular expressions and L(R) ⊆ L(S) } Show that A
is decidable.
 Proof: We describe a TM that decides A:
 “On input <R,S> where R and S are regular expressions,

1) Convert the regular expression R to an equivalent DFA A, using the procedure
for converting a regular expression to an NFA, and the procedure for
converting an NFA to a DFA.

2) Likewise convert the regular expression S to a DFA B.
3) Using the procedure from an exercise, convert B to a DFA C that recognizes

the complement of L(S).
4) Using the procedure from the problem on the midterm (just like the one for

the union of regular languages), construct a DFA D from A and C to
recognize L(R) ∩ L(S).

5) Run the TM for EDFA on D to determine if L(R) ∩ L(S) = ∅.
6) If it is empty, accept, otherwise reject.”

 Note that each stage of our TM uses procedures that we know to halt, so this is a
decider. By determining if the intersection of L(R) with the complement of L(S) is empty,
we determine whether L(R) ⊆ L(S) or not.

 Let S ={<M> | M is a DFA that accepts wR whenever M accepts w}. Show that S
is decidable.
 Proof: We describe a TM that decides S. Basically we test to see whether the
language recognized by M is the same as the reverse of that language.
 “On input <M>, where M is a DFA,

1) Construct a DFA N to recognize {wR | w ∈ L(M)}. (Recall that we saw in a
problem how to construct an NFA to do this by adding a single accept state
and reversing all the arrows, and we know how to convert an NFA to a DFA).

2) Run the TM for EQDFA with input <M,N>.
If it accepts, accept, otherwise reject.”

