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Main topics of the week: 
- Countable and uncountable sets 
- Diagonalization proof of uncountable 
- Undecidable halting problem ATM 
- Complement of ATM is not even Turing recognizable 
- Review for final 

 
 
Review problems for final. 
 
 Let G be the grammar   S →  aS | aA | a 
      A →  aAb | ab 
 Give a concise description of L(G) and a PDA to accept L(G). 
 We observe that the symbol A generates anbn for all n ≥ 1. The rules for S using aA 
and a simply add another ‘a’ in front, so that gives us strings of the form aanbn for all n≥0. 
The rule aS for S allows an arbitrary number of a’s to be added at the beginning, so L(G) 
= { ambn | m > n ≥ 0}. 

 
 
 Show that the C programming language is not a context free language. 
 Proof:  Suppose that C is a CFL. By the pumping lemma for CFLs, there must be a 
pumping length p. Consider the legal C program: 
    f(){int aa…a;aa…a;aa…a;} 
In this program, the variable is ap, i.e., the symbol ‘a’ repeated p times. Suppose we 
realize this string as uvxyz, where |vxy| ≤ p. If vy contains the blank or any of the 
symbols preceding it, then we certainly have a syntax error in uxz or at least an 
undeclared variable. If vy contains the last semi-colon or closing brace, then again uxz 
will have a syntax error. So vxy must be between the space and the last semi-colon. If vy 
contains a semi-colon and possibly some characters before and after, again uxz will have 
an undeclared variable since one set of the a’s will combine to be at least p+1 a’s while 
the other stays the same. If vxy contains no semi-colon, then uvvxyyz will have a second 
identifier, so again the program will not be legal since something will be undeclared. This 
exhausts all the possibilities; so legal C programs are not a context free language. 
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 Let A = {<R,S> | R and S are regular expressions and L(R) ⊆  L(S) } Show that A 
is decidable. 
 Proof:  We describe a TM that decides A: 
 “On input <R,S> where R and S are regular expressions, 

1) Convert the regular expression R to an equivalent DFA A, using the procedure 
for converting a regular expression to an NFA, and the procedure for 
converting an NFA to a DFA. 

2) Likewise convert the regular expression S to a DFA B. 
3) Using the procedure from an exercise, convert B to a DFA C that recognizes 

the complement of L(S). 
4) Using the procedure from the problem on the midterm (just like the one for 

the union of regular languages), construct a DFA D from A and C to 
recognize L(R) ∩ L( S ). 

5) Run the TM for EDFA on D to determine if L(R) ∩ L( S ) = ∅. 
6) If it is empty, accept, otherwise reject.” 

 Note that each stage of our TM uses procedures that we know to halt, so this is a 
decider. By determining if the intersection of L(R) with the complement of L(S) is empty, 
we determine whether L(R) ⊆ L(S) or not. 
 
  Let S ={<M> | M is a DFA that accepts wR whenever M accepts w}. Show that S 
is decidable. 
 Proof:  We describe a TM that decides S. Basically we test to see whether the 
language recognized by M is the same as the reverse of that language. 
 “On input <M>, where M is a DFA, 

1) Construct a DFA N to recognize {wR | w ∈ L(M)}. (Recall that we saw in a 
problem how to construct an NFA to do this by adding a single accept state 
and reversing all the arrows, and we know how to convert an NFA to a DFA). 

2) Run the TM for EQDFA with input <M,N>. 
If it accepts, accept, otherwise reject.” 


