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Main topics of the week: 
- Examples and definition of nondeterminism 
- Equivalence of NFAs and DFAs 
- Conversion of NFA to DFA 
- Closure of regular languages under union, concatenation, star 

 
Example of an NFA. 
 

 
The following diagram is a DFA that recognizes the same language. You should convince 
yourself that these two automata do recognize the same language. Notice that the ε 
transitions and multiple and missing transitions of the NFA make it much easier to 
understand. 
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Another example. The following DFA has 5 states and recognizes the language that we 
can describe as any sequence of ab and aba. Even with just 5 states, it is not immediately 
obvious what the DFA does. Between states q4 and q5, we can see that any number of ab 
occurrences keeps the string accepted, but beyond that, it takes a lot of careful analysis to 
see what is going on. We have a dead state q3, that is apparently reached by seeing two 
a’s in a row. 

 
 
 
Let’s contrast this with recognizing the same language with an NFA. 

 
 
Note that here we have 

only three states and it is pretty 
easy to see what is going on, 
since the state progression is in 
only one direction, caused by a 
followed by b, and then possibly 
another a or not. This clearly 
recognizes strings composed of 
ab or aba. 
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Example of the construction from the proof of Theorem 1.19: Consider the simple 
NFA following, where the states are labeled with just the numbers 1, 2, and 3. The 
alphabet is {a,b} and the language recognized is all strings with zero or more a’s 
followed by zero or more b’s followed by zero or more a’s. 

 
Following the construction, we build our DFA using eight states, corresponding to 

the eight subsets of {1,2,3}.  
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Notice that the start state is {1,2,3} (the ε-closure of 1), and there are four final states, the 
ones that contain 3. Also notice that the state ∅ has transitions back to itself since the 
mapping for δ’ we defined in the proof results in an empty set of states. As we look at 
this diagram, we see that 4 states have no arrows going into them and are not the start 
state: {1}, {2}, {1,2}, {1,3}. So we can eliminate these and their arrows from the 
diagram without affecting the operation of the machine. Doing so leaves us with the 
diagram: 

 
We have moved the state {3} down to make it a little less confusing. Notice that 

we have three final states, and roughly, {1,2,3} corresponds to leading a’s, {2,3} 
corresponds to middle b’s, and {3} corresponds to trailing a’s. The ∅ state traps the 
occurrence of b appearing after a’s, b’s, and a’s. 

We were lucky in this example that we could eliminate half of the states. 
Generally, for a pattern match – looking for a substring – the constructed DFA can be 
simplified to the same number of states as the NFA. However, there are examples 
where we get the exponential increase in the number of states. The NFA recognizing 
sequences of 0s and 1s where the nth symbol from the end is a 1 has n+1 states (the 
start state transitions back to itself on a 0 or 1, but may also transition on 1 to the next 
state. All other transitions are for both 0 and 1. When you think about the DFA that 
can recognize this language, it must “remember” the last n characters it has seen to be 
able to tell if there is a 1 n places from the end. Since there are 2n possible sequences 
of such characters, we see that there must be that many states, hence the exponential 
explosion in the number of states. 
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