
Nondeterminism Week3 Selected Lecture Notes

Atkins – Winter 2002 CIS 420/520 Automata Theory -1-

Main topics of the week:
- Examples and definition of nondeterminism
- Equivalence of NFAs and DFAs
- Conversion of NFA to DFA
- Closure of regular languages under union, concatenation, star

Example of an NFA.

The following diagram is a DFA that recognizes the same language. You should convince
yourself that these two automata do recognize the same language. Notice that the ε
transitions and multiple and missing transitions of the NFA make it much easier to
understand.

q1 q2 q3 q4
0,ε 1 1

0,1

0,1

An NFA

q1

q2

q3

q4

0

1
1

0,1

0

0

1

DFA recognizing same language

Nondeterminism Week3 Selected Lecture Notes

Atkins – Winter 2002 CIS 420/520 Automata Theory -2-

Another example. The following DFA has 5 states and recognizes the language that we
can describe as any sequence of ab and aba. Even with just 5 states, it is not immediately
obvious what the DFA does. Between states q4 and q5, we can see that any number of ab
occurrences keeps the string accepted, but beyond that, it takes a lot of careful analysis to
see what is going on. We have a dead state q3, that is apparently reached by seeing two
a’s in a row.

Let’s contrast this with recognizing the same language with an NFA.

Note that here we have

only three states and it is pretty
easy to see what is going on,
since the state progression is in
only one direction, caused by a
followed by b, and then possibly
another a or not. This clearly
recognizes strings composed of
ab or aba.

q1

q2

q3

q5

a

b b

a,b

a

b

q4
a

b

a

DFA recognizing?

q1

q2

q3

a

a, ε
b

equivalent NFA

Nondeterminism Week3 Selected Lecture Notes

Atkins – Winter 2002 CIS 420/520 Automata Theory -3-

Example of the construction from the proof of Theorem 1.19: Consider the simple
NFA following, where the states are labeled with just the numbers 1, 2, and 3. The
alphabet is {a,b} and the language recognized is all strings with zero or more a’s
followed by zero or more b’s followed by zero or more a’s.

Following the construction, we build our DFA using eight states, corresponding to

the eight subsets of {1,2,3}.

1 2

3
ε

a

ε

b a

Simple NFA

∅ {1}

{1,3} {1,2}

{3} {2}

a,b

a

b

b

b

b

a a

b

b

b a

a
a

{1,2,3} {2,3}

a

DFA constructed from it

Nondeterminism Week3 Selected Lecture Notes

Atkins – Winter 2002 CIS 420/520 Automata Theory -4-

Notice that the start state is {1,2,3} (the ε-closure of 1), and there are four final states, the
ones that contain 3. Also notice that the state ∅ has transitions back to itself since the
mapping for δ’ we defined in the proof results in an empty set of states. As we look at
this diagram, we see that 4 states have no arrows going into them and are not the start
state: {1}, {2}, {1,2}, {1,3}. So we can eliminate these and their arrows from the
diagram without affecting the operation of the machine. Doing so leaves us with the
diagram:

We have moved the state {3} down to make it a little less confusing. Notice that

we have three final states, and roughly, {1,2,3} corresponds to leading a’s, {2,3}
corresponds to middle b’s, and {3} corresponds to trailing a’s. The ∅ state traps the
occurrence of b appearing after a’s, b’s, and a’s.

We were lucky in this example that we could eliminate half of the states.
Generally, for a pattern match – looking for a substring – the constructed DFA can be
simplified to the same number of states as the NFA. However, there are examples
where we get the exponential increase in the number of states. The NFA recognizing
sequences of 0s and 1s where the nth symbol from the end is a 1 has n+1 states (the
start state transitions back to itself on a 0 or 1, but may also transition on 1 to the next
state. All other transitions are for both 0 and 1. When you think about the DFA that
can recognize this language, it must “remember” the last n characters it has seen to be
able to tell if there is a 1 n places from the end. Since there are 2n possible sequences
of such characters, we see that there must be that many states, hence the exponential
explosion in the number of states.

∅

{1,2,3} {2,3} {3}

a,b

b
a

b

b

a

a

DFA after removing unreachable states

