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Main topics of the week: 
- Pumping lemma and examples 
- State minimization 
- Examples of proving regularity 

 
Pumping Lemma Examples 

Consider the language B = {0n1n | n ≥ 0} that we intuitively feel is not regular. 
Suppose that B is regular. Then by the pumping lemma, there is a pumping length p. 
Consider the string 0p1p, and let x, y, and z be the substrings guaranteed by the pumping 
lemma. It is certainly true that y must consist of just zeroes, or just ones, or both. If y 
consists of just zeroes, then the string xyyz will have have more zeroes than ones since 
the y adds only more zeroes, and x and z are fixed. Likewise, if y consists of just ones, 
then the same reasoning shows that xyyz has more ones than zeroes. So we know that y 
cannot be all zeroes or all ones. So y must have some of each. However, if we again look 
at the string xyyz, we would see that the zeroes of the second y occurrence would occur 
after the ones in the first y occurrence, again a contradiction. Since all of the possibilities 
for y lead to a contradiction, we conclude that there can be no pumping length, hence B is 
not a regular language. 
 This proof can be simplified by using condition 3 from the pumping lemma: that 
|xy| ≤ p. Using this, we can assert that y must consist entirely of zeroes and thus not have 
to argue all the separate cases. 
 
 The art of using the pumping lemma is being clever about the choice of the string 
that produces a contradiction. Above it was pretty easy since any string of length p would 
have worked, but that is not always the case. 
 
 For another example, let P be the language of all palindromes, i.e., strings that are 
the same when read in the reverse direction. If P is regular, then we have a pumping 
length p. Consider the string apbap. Certainly this is a palindrome. In our decomposition 
xyz, we are guaranteed that the length of xy does not exceed p. Thus, xy must consist just 
of a’s and in particular this will be true of y, say y=ak, where k ≥ 1. But then xz would 
have the form ap-kbap, and this is obviously not a palindrome, so P is not regular. 
 
 Here’s another example that uses a little more reasoning about lengths. Let T = 
{0k | k = 2n for some n ≥ 0}. That is, T is the set of all strings of zeroes whose length is a 
power of 2. If it is regular, then the pumping lemma applies. Let s be a string of length 
m ≥  p, and s=xyz. We know that y = 0n for some n and m = 2k for some k ≥ 0. Note that 
xz will have length 2k – n, which must also be a power of 2, say 2k – n = 2i for some i < k. 
Similarly, if we look at xyyz, we see that 2k + n = 2j for some j > i. Adding these together 
gives 2k+1 = 2i +2j = 2i (1 + 2j-i). Dividing out the 2i leaves us with the left hand side a 
power of two, hence even, and the right hand side as 1 plus a power of two (power at 
least one), which is odd. Thus T is not regular. 
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State Minimization 
The following material is based on problems 1.34 and 1.35 in Sipser. 
 
Definition: Let x and y be any strings and L be any language. We say that x and y are 
distinguishable by L if some string z exists such that exactly one of the strings xz and yz 
is in L. Otherwise for every string z, yz ∈ L ⇒ xz ∈ L and we say that x and y are 
indistinguishable by L. In this case, we write x ≡L y. 
 
Lemma: Indistinguishability is an equivalence relation. 
 
Proof: This is pretty obvious. Certainly it is reflexive and symmetric. And it’s clearly 
transitive since if x ≡L y and y ≡L w, and z is any string, and wz ∈ L, then yz ∈ L by the 
indistinguishability of y and w, and thus xz ∈ L by the indistinguishability of x and z. So 
x ≡L w. 
 
Definition: Let L be a language and X a set of strings. We say that X is pairwise 
distinguishable by L if every two distinct strings in X are distinguishable by L. We 
define the index of L to be the maximum number of elements in any set that is pairwise 
distinguishable by L, and this could be finite or infinite. 
 
Lemma: If L is recognized by a DFA with k states, then L has index at most k. 
 
Proof: Let M be a k-state DFA that recognizes L. Suppose that L has index greater than 
k, i.e., there is a set X with more than k elements and X is pairwise distinguishable by L. 
Then there must be two distinct strings x and y in X which transition to the same state in 
M (by the pigeonhole principle, since there are only k states, but k+1 or more strings, 
they can’t all transition to unique states). This would also imply that for any string z, xz 
and yz transition to the same state. In particular, if yz transitions to an accept state, so 
does xz, thus x ≡L y. But this contradicts the assumption of X being pairwise 
distinguishable by L. So our lemma is proved. 
 
Lemma: If the index of L is a finite number k, then it is recognized by a DFA with k 
states. 
 
Proof: We will construct a DFA M to recognize L. Let X = {s1, s2, …, sk} be pairwise 
distinguishable by L (as guaranteed by the index of L being k). Define M as follows: 

1) The states of M are {q1, q2, …, qk} (i.e., one state for each string in X) 
2) δ(qi, a) = qj where sj ≡L sia. We know that sj exists since otherwise sia would be 

distinguishable from every element of X, meaning that X ∪ {sia} is a larger set 
pairwise distinguishable by L. 

3) The accept states of M are {qi | si ∈ L} 
4) The start state of M is the qi such that si ≡L ε. 

We claim that M recognizes L. The start state corresponds to a string indistinguishable 
from ε. Each transition moves to the state corresponding to a string indistinguishable by 
appending the input character. And the accept states correspond to strings 
indistinguishable from the strings in L. Moreover, since x ≡L si implies xa ≡L sia for any a 
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(siaz = si(az) ∈ L ⇒ x(az) = xaz ∈ L), we can see that the computation sequence for any 
string a1a2…an ∈ L is just the set of states associated with the equivalence classes of ε, a1, 
a1a2, a1a2a3, …, a1a2…an and the last corresponds to an accept state of M. For the other 
direction, any string accepted is likewise indistinguishable from the string of its 
acceptance state, namely a string in L, so must itself be in L (using ε in the 
indistinguishability definition). 
 
Theorem: L is regular if and only if it has finite index. Moreover, its index is the size of 
the smallest DFA recognizing it. 
 
Proof:  By the first lemma, if L is regular, it has index at most k, where k is the number of 
states in a DFA recognizing it. By the second lemma, if L has finite index k, it is 
recognized by a DFA with k states, so is regular. As for the smallest part, suppose L has 
index k. Then we have a DFA with k states recognizing L by the construction in the 
lemma. If there was a DFA with a smaller number of states, then the first lemma would 
mean that the index of L was no more than that number of states, i.e., smaller than k. But 
we chose k to be the index of L, so this would be a contradiction. 
 
So what do these results say? They suggest a way to find the minimal state DFA for a 
language by basing it on the equivalence classes of the indistinguishability relation. In 
practice, an algorithm to minimize the states of a DFA might proceed toward 
indistinguishability by degrees, i.e., indistinguishability by strings of length n, and using 
this to lump states together. Eventually, this algorithm would achieve a steady state, at 
which point the DFA would have minimal states. 
 
 
Examples of proving regularity 
 
Problem: Let Prefix(A) = { w | wx ∈ A for some string x}, i.e., the initial parts of all 
strings in A. If A is a regular language, prove that Prefix(A) is a regular language. 
 
Proof:  Let M be a DFA that recognizes A. We construct the DFA M’ that has the same 
states as M, the same transitions as M, and the same start state as M. The difference is in 
the accept states – the accept states of M’ are all those states for which there is a path to 
an accept state of M. Note that this is well defined in that we can determine if a state is an 
accept state of M’ by checking a finite number of transitions. To see that M’ recognizes 
Prefix(A), let w ∈ Prefix(A). Then wx ∈ A, so there is a computation sequence in M for 
wx. The transitions for the x part lead to an accept state of M, hence the state beginning 
the x part is an accept state of M’ by our definition. Thus the first part of the computation 
sequence shows w is accepted by M’. Conversely, if w is accepted by M’, then there is a 
computation sequence resulting in an accept state of M’. By definition of the accept states 
of M’, this means there is a transition sequence to an accept state of M, and putting these 
together gives the computation sequence of M, and x is the string associated with the 
latter part of the transition sequence, thus w ∈ Prefix(A). 
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Problem: Prove that if A is a regular language, then the “proper” prefixes of A is a 
regular language, i.e., those prefixes that are not in A themselves. 
 
Proof: Since regular languages are closed under complement, ~A is regular. And since 
regular languages are closed under intersection, ~A ∩ Prefix(A) is regular, and this is 
exactly the prefixes that are not in A. 
 
Problem: Let A = { w | w contains an equal number of occurrences of the substrings 01 
and 10}. Note that 101 ∈ A since it has a single 01 and a single 10, but 
1010 ∉ A since it has two 10s, but only one 01. Show that A is a regular language. 
 
Proof: When you think about counting occurrences of 01 and 10 in strings, the presence 
of consecutive 1s and 0s does not affect the counting. That is, 0111100001 is equivalent 
to 0101 for the purposes of counting these substrings. Looking at it this way, we see that 
we are reducing to alternating 0s and 1s, and for the counts to be the same, the string 
must begin and end with the same symbol. So we really have the language described as 
beginning and ending with the same symbol, which is just the regular expression 
0Σ*0∪1Σ*1, hence this is a regular language. 


