Regular Expressions Week 5 Selected Lecture Notes

Main topics of the week:
- Pumping lemma and examples
- State minimization
- Examplesof proving regularity

Pumping Lemma Examples

Condder thelanguage B ={0"1" [n 3 0} that we intuitively fed is not regular.
Suppose that B isregular. Then by the pumping lemma, thereis a pumping length p.
Consider the string 0°1P, and |t X, y, and z be the substrings guaranteed by the pumping
lemma. It is certainly truethat y must consst of just zeroes, or just ones, or both. If y
congsts of just zeroes, then the string xyyz will have have more zeroes than ones Snce
the y adds only more zeroes, and x and z arefixed. Likewisg, if y conssts of just ones,
then the same reasoning shows that xyyz has more ones than zeroes. So we know that y
cannot be al zeroes or dl ones. So y must have some of each. However, if we again look
at the string xyyz, we would see that the zeroes of the second y occurrence would occur
after the onesin thefirgt y occurrence, again a contradiction. Since al of the possibilities
for y lead to a contradiction, we conclude that there can be no pumping length, hence B is
not aregular language.

This proof can be smplified by usng condition 3 from the pumping lemma: that
[xy| £ p. Using this, we can assart that y must consist entirely of zeroes and thus not have
to argue al the separate cases.

The art of using the pumping lemmais being clever about the choice of the string
that produces a contradiction. Above it was pretty easy snce any string of length p would
have worked, but that is not always the case.

For another example, let P be the language of dl paindromes, i.e., strings that are
the same when read in the reverse direction. If P is regular, then we have a pumping
length p. Consider the string &’ba’. Certainly thisis a paindrome. In our decomposition
Xyz, we are guaranteed that the length of xy does not exceed p. Thus, Xy must consist just
of asand in particular thiswill betrue of y, say y=d‘, where k 3 1. But then xz would
have the form & *baP, and this is obviously not a palindrome, so Pis not regular.

Here' s another example that uses alittle more reasoning about lengths. Let T =
{0% |k = 2" for somen 3 O}. That is, T isthe set of dl strings of zeroeswhose lengthisa
power of 2. If it isregular, then the pumping lemma gpplies. Let sbe asring of length
m3 p, and s=xyz. We know that y = 0" for some n and m = 2 for somek 3 0. Note that
xz will havelength 2¢ — n, which must aso be a power of 2, say 2 —n = 2' for somei <k,
Similarly, if welook a xyyz, we see that 2 + n = 2 for somej > i. Adding these together
gives 21 = 21 +2 = 2' (1 + 2. Dividing out the 2' leaves us with the left hand side a
power of two, hence even, and the right hand side as 1 plus a power of two (power at
least one), which isodd. Thus T is not regular.
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State Minimization
The following materia is based on problems 1.34 and 1.35 in Sipser.

Definition: Let x and y be any strings and L be any language. We say that x and y are
distinguishable by L if some gring z exists suchthat exactly one of the stringsxz and yz
isin L. Otherwisefor every stringz,yz1 L b xz1 L andwesay that x andy are
indigtinguishable by L. Inthiscase, wewritex © | y.

Lemma: Indigtinguishability is an equivaence rdation.

Proof: Thisis pretty obvious. Certainly it isreflexive and symmetric. And it's clearly
trangtivesinceif x © L yandy © w, and zisany string, andwz 1 L, thenyz1 L by the
indistinguishebility of y andw, andthusxz T L by the indistinguishability of x and z. So
XOL W.

Definition: Let L be alanguage and X aset of drings. We say that X ispairwise
distinguishable by L if every two distinct ringsin X are distinguishable by L. We
define theindex of L to be the maximum number of dementsin any set thet is parwise
distinguishable by L, and this could be finite or infinite.

Lemma: If L isrecognized by a DFA with k states, then L hasindex at most k.

Proof: Let M be ak-state DFA that recognizes L. Suppose that L has index greater than
k, i.e, thereisaset X with morethan k dementsand X is pairwise distinguishable by L.
Then there must be two digtinct strings x and y in X which trangtion to the same Satein
M (by the pigeonhole principle, since there are only k states, but k+1 or more strings,
they can't dl trangtion to unique states). Thiswould dso imply that for any string z, xz
and yz trangtion to the same date. In particular, if yz trangitions to an accept date, 0
doesxz, thusx © y. But this contradicts the assumption of X being pairwise
distinguishable by L. So our lemmais proved.

Lemma: If theindex of L isafinite number k, then it isrecognized by a DFA with k
states.

Proof: We will construct aDFA M torecognizeL. Let X ={s, , ..., &} beparwise
distinguishable by L (as guaranteed by the index of L being k). Define M asfollows:

1) Thedatesof M are{qu, O, ..., gk} (i.e., one date for each string in X)

2) d(g, a) =g wheres ° sa Weknow that 5 exists since otherwise sawould be
distinguishable from every dement of X, meaning thet X E {sa} isalarger set
parwise diginguishable by L.

3) Theaccept statesof M are{qi |s 1 L}

4) The dart dateof M istheq suchthat s °| e.

We clam that M recognizes L. The start state corresponds to a string indistinguishable
from e. Each trangtion moves to the state corresponding to a string indistinguishable by
appending the input character. And the accept states correspond to strings
indiginguisheble from the dringsin L. Moreover, Sncex © | s impliesxa® | safor any a
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(saz=s(a@)1 L b x(a)=xaz1 L), we can seethat the computation sequence for any
dringay&...an 1 L isjust the set of states associated with the equivalence dlasses of e, &,
adp, adpag, ..., ad...a and the last corresponds to an accept state of M. For the other
direction, any string accepted is likewise inditinguishable from the string of its

acceptance date, namely adring in L, so must itsdf beinL (usng e inthe
indiginguishability definition).

Theorem: L isregular if and only if it hesfinite index. Moreover, itsindex isthe Sze of
the smdlest DFA recognizing it.

Proof: By thefirst lemma, if L isregular, it hasindex a mogst k, where k is the number of
daesin a DFA recognizing it. By the second lemma, if L hasfiniteindex k, it is
recognized by a DFA with k states, so isregular. As for the smalest part, suppose L has
index k. Then we have a DFA with k states recognizing L by the congruction in the
lemma. If there was a DFA with asmadler number of states, then the first lemmawould
mean that the index of L was no more than that number of dates, i.e, smdler than k. But
we chose k to be the index of L, so thiswould be a contradiction.

So what do these results say? They suggest away to find the minima state DFA for a
languege by basing it on the equivaence dasses of the indistinguishability rdation. In
practice, an agorithm to minimize the states of a DFA might proceed toward
indistinguishability by degrees, i.e,, indigtinguishability by strings of length n, and using
this to lump States together. Eventualy, this agorithm would achieve a Seady date, at
which point the DFA would have minimd dates.

Examples of proving regularity

Problem: Let Prefix(A) ={ w |wx T A for some string x}, i.e, theinitid parts of al
gringsin A. If A isaregular language, prove that Prefix(A) isaregular language.

Proof: Let M beaDFA that recognizes A. We congtruct the DFA M’ that has the same
dtates as M, the same trangitions as M, and the same start state as M. The differenceisin
the accept states — the accept states of M’ are dl those states for which thereis a path to
an acoept sate of M. Note that thisiswell defined in that we can determine if agtateisan
accept state of M’ by checking afinite number of trandtions. To see that M’ recognizes
Prefix(A), leew T Prefix(A). Thenwx T A, so there is a computation sequence in M for
wx. The trangtionsfor the x part lead to an accept state of M, hence the state beginning
the X part is an accept state of M’ by our definition. Thusthe first part of the computation
sequence shows w is accepted by M. Conversdly, if w is accepted by M’, then thereisa
computation sequence resulting in an accept state of M’. By definition of the accept states
of M’, thismeans there is a trangition sequence to an accept state of M, and putting these
together gives the computation sequence of M, and x is the string associated with the
|atter part of the transition sequence, thusw T Prefix(A).
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Problem: Provethat if A isaregular language, then the “proper” prefixesof A isa
regular language, i.e., those prefixes that are not in A themsdlves.

Proof: Since regular languages are closed under complement, ~A isregular. And sSince
regular languages are closed under intersection, ~A C Prefix(A) isregular, and thisis
exactly the prefixesthat are not in A.

Problem: Let A ={ w | w contains an equal number of occurrences of the substrings 01
and 10}. Notethat 1011 A snceit hasasingle 01 and asingle 10, but
10101 A sinceit hastwo 10s, but only one 01. Show that A is aregular language.

Proof: When you think about counting occurrences of 01 and 10 in strings, the presence
of consecutive 1s and Os does not affect the counting. That is, 0111100001 is equivaent
to 0101 for the purposes of counting these subsirings. Looking at it this way, we see that
we are reducing to aternating Os and 1s, and for the counts to be the same, the string
must begin and end with the same symbol. So we redly have the language described as
beginning and ending with the same symbol, which isjust the regular expression

0S*OE 1S* 1, hence thisis a regular language.
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