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Main topics of the week: 
- Context Free Grammars and parse trees 
- Regular Languages and CFGs 
- Chomsky Normal Form for CFGs 
- Pushdown Automata Definition and examples 
- Construction of PDA from a CFG 

 
CFGs for Regular Languages. 
 A CFG for a regular language is easy if you have the DFA for the language. To create 
the CFG from the DFA, just make a variable for each state and have a rule of  the form 
Ri→ aRj if there is a transition by input ‘a’ from Ri to Rj. Have a rule that takes each 

variable corresponding to an accept state to ε. 
 

 A right-linear grammar is a grammar in which all productions are of the form 
  A → xB where x is a terminal 
   or A → ε. The construction above shows that a DFA can be used to create a right-
linear grammar. A left-linear grammar has a similar definition. A regular grammar is a 
right or left linear grammar, and corresponds to a regular language. 
 

 

CFG from DFA for regular language { w ∈ {0,1}* | every 0 is followed by a 1} 

 S  A  B 

1 
0 

1 

0 0,1 

S → 0A | 1S | ε 
A → 0B | 1S 
B → 0B | 1B 

Simplified to: 
 
S → 01S | 1S | ε  
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Example of Chomsky normalization. 
 
 This example is for a grammar which produces balanced parentheses. The right side at 
each stage shows the way the grammar has been changed. The highlighted  text indicates 
what is being eliminated on the left and what are the corresponding additons on the right. 
 

S → ( S ) | SS | ε   
 
First we add a new start symbol. 

S → ( S ) | SS | ε  S0 → S 
S → ( S ) | SS | ε 

 
Then we remove the ε rule S → ε. 

S0 → S 
S → ( S ) | SS | ε 

S0 → S | ε  
S → ( S ) | SS | ( ) | S 

 
Now we remove the unit rules S → S and S0 → S. 

S0 → S | ε  
S → ( S ) | SS | ( ) | S 

S0 → ( S ) | SS | ( ) | ε  
S → ( S ) | SS | ( ) 

 
Individual rules are added for terminals appearing in strings of length ≥ 2. 

S0 → ( S ) | SS | ( ) | ε  
S → ( S ) | SS | ( ) 

S0 → LSR | SS | LR | ε  
S → LSR | SS | LR 
L → ( 
R → ) 

 
Finally, reduce all strings of length ≥ 3, adding new variables as necessary. 

S0 → LSR | SS | LR | ε  
S → LSR | SS | LR 
L → ( 
R → ) 

S0 → L1R | SS | LR | ε  
S → L1R | SS | LR 
L1 → LS 
L → ( 
R → ) 
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Pushdown Automata Examples 
 

Let A be the language { 0n1n | n ≥ 0}, which we know is not a regular language. We 
show a pushdown automaton that recognizes A. For the formal specification, we need a 
6-tuple (Q, Σ, Γ, δ, q0, F): 

1. Q = {q1,q2,q3,q4} 
2. Σ = {0,1} 
3. Γ = {0,$} 
4. F = {q1,q4} 

For δ we could use a 3-dimensional table for δ, but instead we’ll give the non ∅ 
mappings:  δ(q1,ε,ε) = {(q2,$)} 

 δ(q2,0,ε) = {(q2,0)} 
  δ(q2,1,0) = {(q3,ε)} 
  δ(q3,1,0) = {(q3,ε)} 
  δ(q3,ε,$) = {(q4,ε)} 
Notice that the first transition is really just for initialization since it happens with no 
input, and pushes the $ on the stack. The $ is basically going to be used as a marker for 
the bottom of the stack. This also advances us to the second state. Now when we see 0, 
we stay in the second state, but push 0 on the stack. If we see 1 on input when we have 0 
at the top of the stack, we pop it and advance to the third state. Note that if we saw a 1 
first, we would halt as this transition is not defined since the stack would have $ on the 
top. Once in the third state, with each 1 and still a 0 on the stack, we pop it but stay in the 
third state. When we see $ on the stack (no input), we pop it and advance to the accept 
state. Note that the accept state has not transitions, so we cannot have any more input in 
order to be accepted. So we’re stuck if we see the $ and haven’t seen any 1’s, or we still 
have input. We’re also stuck if we see any 0’s after we have seen a 1. And most 
importantly, the number of 0’s and 1’s must be the same. 

We can also draw state diagrams for PDAs. In addition to our usual conventions for 
drawing, we now add to our arrow label to indicate what is happening to the stack. This 
will just be the mapping as given in the definition, from Γε to Γε. A mapping ε → b 
means to push b on the stack, a → ε means to pop a from the stack, ε → ε means to do 
nothing to the stack, and a → b means to pop a and push b. 

Here is the diagram for the PDA for 0n1n
 just described formally.  Note that the start 

state is an accept state, and this allows empty strings. We see the transitions as discussed 
above, with the first being an initialization where $ is pushed on the stack. Then we loop 

 

q1 q3 q2 q4 
ε, ε → $ 

1, 0 → ε 0, ε → 0 

ε, $ → ε 1, 0 → ε 

push 0 on 
input 0 

pop 0 on 
input 1 PDA for 0n1n 
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on 0’s, pushing 0 on the stack for each input 0. 1’s take us to the next state and also pop a 
0, which must be on the stack, else we would halt. We loop on 1’s and popping 0’s until 
the stack is empty (i.e., has our $ marker). 

 
Here’s another example, the language of all strings that have an equal number of 0s 

and 1s. In this case, we’ll use the stack to match the 0s and 1s as we go along, which 
means we will be pushing 0s on until we see 1s at which point we’ll pop 0s for each 1. 
When the stack is empty and we see 1s, we’ll push 1s until we see 0s to match. The trick 
is noticing when the stack is empty so that we can know to switch to pushing. We do this 
by first initializing the stack as before (the transition to q2) with the marker ‘$’. From this 
state, if we see a 0, we push 0s (state q3) and also in this state, whenever we see 1s, we 
pop the 0s. If the stack ever gets empty, we return to q2 and preserve our marker. We use 
state q4 similarly to push 1s and match 0s against them. What makes this work is that 
whenever the stack is empty, we return to our neutral state so we can decide whether to 
push 1s or 0s, depending on the input. Notice that we are not requiring equal consecutive 
numbers of 0s and 1s, just that they ultimately balance. 

 
In fact, we could have eliminated the last state q5 by having the transition there go 

back to the start state instead. Essentially, this would mean that we would be in the accept 
state whenever the 0s and 1s were balanced, and if there is no more input, the string 
would be accepted. (If we had done this in the previous example, it would have extended 
the language to be all strings where 0s were followed by an equal number of 1s.) 

 

q1 q2 q5 
ε, ε → $ 0, ε → 0 

ε, $ → ε 

1, 0 → ε 
0, ε → 0 

PDA for equal number 
of 0s and 1s 

q3 

q4 

1, ε → 1 

ε, $ → $ 

ε, $ → $ 0, 1 → ε 
1, ε → 1 
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One more example: we used the pumping lemma to show that the palindromes are not 

regular. Let’s now construct a PDA to recognize palindromes. Notice that we really need 
nondeterminism here to “guess” when we are at the middle of the string. That is, we push 
0s and 1s on the stack, then guess to begin popping as we match to the remaining input. 
Without nondeterminism to make this guess, this would be very hard to come up with a 
PDA 

 
 
 
 
 
 
 
Example of constructing a PDA from a CFG. 
 

Here is a concrete example of using this construction of Lemma 2.13 on a CFL. We 
try this for the simple expression language defined by the grammar we have seen before: 

E → E + T | T 
T → T * F | F 
F → ( E ) | a 

Here the variables are E, T, and F, and the terminals are a, +, *, (, and ). There are six 
rules in all. The following diagram shows the PDA constructed for this language. We 
have shown the longhand transitions for the non unit rules using intermediate states. Note 
that the symbols are pushed on the stack in the reverse order from how they occur in the 
rule. Three of the rules are unit rules, so require no intermediate state. Finally, there are 
five terminals, so five corresponding transitions on matching input. 

 

q1 q3 q2 q4 
ε, ε → $ 

0, 0 → ε 
1, 1 → ε 

0, ε → 0 
1, ε → 1 

ε, $ → ε ε, ε → ε 

PDA for palindromes 
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start 

loop 

accept 

ε, ε →$ 

Rule: E → E+T 

ε, $ → ε 

ε, E → T 

PDA to recognize simple expressions 

a, a → ε 
+, + → ε 
*, * → ε 
(, ( → ε 
), ) → ε 

ε, ε → E 

ε, ε → + 

ε, E → T 
ε, T → F 
ε, T → a 

ε, ε → T 

ε, ε → * 

ε, T → F 

Rule: T → T*F 

Rule: F → (E) 
ε, F → ) 

ε, ε → E 
ε, ε → ( 

Unit Rules 

Terminals 

ε, ε →E 


