Context Free Grammars Week 7 Selected Lecture Notes

Main topics of the week:
- Context Free Grammarsand parsetrees
- Regular Languages and CFGs
- Chomsky Normal Form for CFGs
- Pushdown Automata Definition and examples
- Congruction of PDA from a CFG

CFGsfor Regular Languages.

A CFG for aregular language is easy if you have the DFA for the language. To cregte
the CFG from the DFA, just make a variable for each state and have arule of the form
R® aR if thereisatrandtion by input ‘a from R to R;. Have arule that takes each

S® OA|1S|e Simplified to:
A® 0B|1S
B® OB|1B S® 01S|1S|e

CFG from DFA for regular language{ w1 {0,1}* | every Oisfollowed by a 1}

variable corresponding to an accept state to e.

A right-linear grammar isagrammar in which al productions are of the form
A ® xB wherexisatermind
or A ® e. The congtruction above shows that a DFA can be used to create aright-
linear grammar. A left-linear grammar has asmilar definition. A regular grammar isa
right or left linear grammar, and corresponds to aregular language.

Atkins —Winter 2002 CIS 420/520 Automata Theory -1-

Context Free Grammars Week 7 Selected Lecture Notes

Example of Chomsky nor malization.

This example isfor agrammar which produces balanced parentheses. The right side at
each stage shows the way the grammar has been changed. The highlighted text indicates
what is being eliminated on the left and what are the corresponding additons on the right.

[S® (S)[SS|e I |
First we add a new start symbol.
S® (S)|SS|e S® S
S® (S)|SS]|e
Then weremovetheeruleS® e
S® S S® Sle
S® (S)[SS|e S® (S)[ISS|O]S

Now we remove the unit rulesS® Sand §,® S

S® S|e
S® (S)[SS1OIS

S® (S)ISSI() |e
S® (S)ISS]10)

Individual rules are added for terminals appearing in strings of length 3 2.

S® (S)Iss|() e
S® (S)Iss|()

S® LSR|SS|LR|e
S® LSR|SS|LR
L® (

R®)

Finaly, reduce all strings of length 2 3, adding new variables as necessary.

S$® LSR|SS|LR|e
S® LSR|SS|LR

S® L,R|SS|LR|e
S® L,R|SS|LR

L® (L,® LS
R®) L® (
R®)

Atkins — Winter 2002

CIS 420/520 Automata Theory

Context Free Grammars Week 7 Selected Lecture Notes

Pushdown Automata Examples

Let A bethelanguage{ 0"1" |n3 O}, which we know is not aregular language. We
show a pushdown automaton that recognizes A. For the formal specification, we need a
6-tuple (Q, S, G, d, qo, F):

1. Q={01,02,03,0}
2. S={01}

3. G={0,%}

4. F={q1,04}

For d we could use a3-dimensond table for d, but instead we'll givethe non A&

meppings d(cu.ee) = {(a.H)}

d(qz’o’e) = {(anO)}

d(02,1,0) ={(az.€)}

d(03,1,0) = {(az.€)}

d(gs.e,9) = {(ou.€)}
Notice that the fird trangtion isredly just for initidization since it happens with no
input, and pushes the $ on the stack. The $ is basicaly going to be used as amarker for
the bottom of the stack. This aso advances us to the second state. Now when we see 0,
we stay in the second state, but push 0 on the stack. If we see 1 on input when we have O
at the top of the stack, we pop it and advance to the third state. Note that if wesaw a1
firgt, wewould hdt asthistrangtion is not defined since the stack would have $ on the
top. Oncein the third state, with each 1 and gill a0 on the stack, we pop it but stay in the
third state. When we see $ on the stack (no input), we pop it and advance to the accept
date. Note that the accept state has not trangitions, so we cannot have any more input in
order to be accepted. So we're stuck if we see the $ and haven't seenany 1's, or we il
have input. We re dso stuck if we see any 0's after we have seen a1l. And most
importantly, the number of 0'sand 1's must be the same.

We can dso draw dtate diagrams for PDAS. In addition to our usua conventions for
drawing, we now add to our arrow labe to indicate what is happening to the stack. This
will just be the mapping as given in the definition, from Geto Ge A mappinge ® b
meansto push b on the stack, a® e meansto pop a from the stack, e ® e meansto do
nothing to the stack, and a® b meansto pop a and push b.

Hereis the diagram for the PDA for 0"1" just described formally. Note that the start
date is an accept Sate, and this alows empty strings. We see the trangitions as discussed
above, with the first being an initidization where $ is pushed on the stack. Then we loop

y

aan push 0 on pop O on
PDA for 0"1 input 0 input 1

Context Free Grammars Week 7 Selected Lecture Notes

on 0's, pushing 0 on the stack for each input 0. 1’ s take us to the next state and also pop a
0, which must be on the stack, else we would hat. We loop on 1’'sand popping 0'suntil
the stack isempty (i.e.,, has our $ marker).

Here' s another example, the language of dl strings that have an equa number of Os
and 1s. In this case, wée'll use the stack to match the Os and 1s as we go aong, which
means we will be pushing Os on until we see 1s at which point we'll pop Os for each 1.
When the stack is empty and we see 1s, we'll push 1s until we see Osto match. The trick
is noticing when the stack is empty so that we can know to switch to pushing. We do this
by firg initidizing the stack as before (the transition to gp) with the marker ‘$. From this
sate, if we see a0, we push Os (date g3) and dso in this state, whenever we see 1s, we
pop the Os. If the stack ever gets empty, we return to ¢ and preserve our marker. We use
state g4 Smilarly to push 1s and match Os againgt them. What makes thiswork is that
whenever the stack is empty, we return to our neutral state so we can decide whether to
push 1s or 0s, depending on the input. Notice that we are not requiring equa consecutive
numbers of Os and 1s, just that they ultimately balance.

e3P® % 0,1® ¢

PDA for equal number
of Osand 1s

In fact, we could have diminated the last state gs by having the trangition there go
back to the dart dtate instead. Essentidly, this would mean that we would be in the accept
state whenever the Os and 1s were balanced, and if there is no more input, the string
would be accepted. (If we had done thisin the previous example, it would have extended
the language to be dl strings where Os were followed by an equa number of 1s)

Atkins —Winter 2002 CIS 420/520 Automata Theory -4-

Context Free Grammars Week 7 Selected Lecture Notes

One more example: we used the pumping lemmato show that the palindromes are not
regular. Let’'s now construct a PDA to recognize palindromes. Notice that we reglly need
nondeterminism here to “guess’ when we are a the middle of the gtring. Thet is, we push
Os and 1s on the stack, then guess to begin popping as we match to the remaining input.
Without nondeterminism to make this guess, this would be very hard to come up with a
PDA

PDA for palindromes

Example of congtructing a PDA from a CFG.

Here is a concrete example of using this congtruction of Lemma2.13 on aCFL. We
try this for the smple expression language defined by the grammar we have seen before:

E® E+T|T

T® T*F|F

F® (E)|a
Herethevariablesare E, T, and F, and thetermindsare a, +, *, (, and). There are Six
rulesin dl. Thefollowing diagram shows the PDA congructed for this language. We
have shown the longhand trangtions for the non unit rules using intermediate sates. Note
that the symbols are pushed on the stack in the reverse order from how they occur in the
rule. Three of the rules are unit rules, so require no intermediate Sate. Findly, there are
five terminas, so five corresponding trangitions on matching inpt.

Atkins —Winter 2002 CIS 420/520 Automata Theory -5-

Context Free Grammars Week 7 Selected Lecture Notes

start Rule E® E+T

() 6e® + ()

Rule T® T*F

Rule F® (E)

e$® e

Unit Rules

accept

Terminals

PDA to recognize simple expressions

Atkins —Winter 2002 CIS 420/520 Automata Theory -6-

