More CFLs, Pumping Lemma Week 8 Selected Lecture Notes

Main topics of the week:
- Congruction of CFG from a PDA
- Pumping Lemmafor CFLs
- Turing Machines

Congructing a CFG from a PDA.
Recdl that we make some smplifying assumptions about our PDA:
1. Thereisasngle accept state.
2. The stack is emptied before accepting.
3. Each trangtion either pushes or pops a symbol from the stack, but not both.

The gist of our grammar congtruction is to define a variable for each pair of Sates
such that the variable generates exactly the strings that move the PDA between the two
dates, leaving the stack in the same condition (i.e., strings that move between P between
the states starting and ending with an empty stack.) Suppose that we can congtruct such a
grammar. If the pair isthe Start state and accept state, then the strings that move between
them with empty stack are exactly those strings accepted by P (remember that we
guaranteed that the stack is emptied before acceptance). The reason for talking about an
arbitrary pair of statesis that we will prove this equivaence between generated strings
and moving through P with empty state by induction. The god isto get it to be true for
the start and accept state, and we accomplish this by an induction proof that showsit is
true for every pair.

We define our grammar G asfollows, where P={Q, S, G, d, Qstart, { Jaccept} } :

1. Thevaiablesof Gare{ Apq|p,gT Q} [onevariable for each state pair]

2. Thedart varidble of G iS Astart,accept [thiswill show that G matches P

3. Foreachpqrsi Qandti Gandabl Scwhee(r)T d(pae)and(qge)l
d(sb,t), we havetherule Ayq® aAb [if there are Sates where we initidly
push a symbol from p, and pop that symbol to get to g, add thisto the
grammar]

4. Forevery pgri Q,wehavetherule Agg® ApArg[rulefor every indirect
path — but adding no terminag]

5. Forevery pl Q, wehavetherule Ay, ® e [null termination for the diagonal
pairs]

Thefollowing pictures might help to see these rules.

ae®t b,t® e

Rule A, ® aA b correspondsto these statesin P

Atkins —Winter 2002 CIS 420/520 Automata Theory -1-

More CFLs, Pumping Lemma Week 8 Selected Lecture Notes

may be a path
may be a path

RuleAy, ® Ap A, correspondsto these statesin P

First Claim: If Ayq generates the string X, then x can bring P from p with empty stack
to q with empty stack.

Proof: This proof will proceed by induction on the number of stepsin the derivation:

If the derivation has one step, then there is a Single rule that substitutes just terminds.
In our definition of G, the only such rules are the ones from (5), i.e., App ® e. Thusthe
generated string must be e, and e certainly can take p with empty stack to p with empty
gack. (It'sjust thetrangtion e, e ® e which has no effect.)

For the induction step, assume the clam hold for any derivation with k or fewer steps
(k ® 1). Suppose we have a derivation with k+1 steps. Since our rules have just two forms
(in3and 4), we'll consder each of these possibilities:

If the first step uses arule Ap® aA 4, think about the portion of x minusthe aand b,
i.e., x=ayb. Thisportion, caledy, is generated by A.swith k steps (dl but the first sepin
the derivation for x). By our induction assumption, this means that y must take r with
empty stack to swith empty stack. By our definition of G, thismeansthat if we gart with
x=ayb in p with empty stack, we can trangtion to r with input aand pushing t, then
trangtion somehow to swith input y, leaving the stack aone, so that t is till on the stack
when we trangtion from sto g on input b, popping t, and thus x gets usto g with empty

stack.
a,e®t P b,t® e
a ‘ ii. y ””.’.‘i\
VS

£ k steps, soy goesfrom r to swith
empty stack [by induction hypothesis|

Case 1. First ruleis Ay ® aA;b. Writex = ayb, where A produces y

Atkins —Winter 2002 CIS 420/520 Automata Theory -2-

More CFLs, Pumping Lemma Week 8 Selected Lecture Notes

For the second case, where the first step is arule Apd® AprArg, We must have X = yz,
wherey and z are the portions generated by the two variables on the right. Since the total
sepsin the derivationis k+1, each of A, and Arq can have a most k steps. So again by
the induction hypothesis, y goes from p to r with empty stack, and z goes from r to g with
empty stack. Obvioudy, then x goes from p to g with empty stack.

steps £ k, so y goesfrom p
tor with empty stack [by
induction hypothesis]

steps £ k, so zgoesfrom r
to q with empty stack [by
induction hypothesis]

Case 2 First step isAp® A, A Xx=yzwhere A, producesy, A, producesz

This completes the induction proof, so our first claim is now proved.

Second Claim: If x brings P from p with empty stack to g with empty stack, then Apq
generates x.

Proof: Agan wewill useinduction, thistime on the number of gepsin the
computation taking placein P.

For the bas's, consider the case where the computation has zero steps. This means it
darts and ends in the same state p. So we need to show that App generates X. Since there
are zero seps in the computation, no input is read, hence x must be the empty string e. By
our clever definition of G (rule’5), Ay just happens to generate e.

For the induction step, we assume that the claim holds if the number of stepsin the
computation isk or fewer, and suppose we have a computation that takes k+1 steps.
There are two possbilities: the slack may be empty only & the beginning and end, or it
may be empty somewhere in between aswell.

For the first case, suppose t is the symbol pushed on the firgt trandgtion of the
computation. Then since thisis the case where the stack is never empty, and we know
that P cannot push and pop in one step, t mugt il be there a the last trangtion. Y ou can
see where we' re going — let aand b be the input for these first and last trangitions, r the
second state, and s the next to last state. Then we gpped to our definition of G to know it
has the rule Ay® aA. We can redlize x as aby, and know that y bringsr to s, leaving t
on the stack. So of course'y bringsr with empty stack to s with empty stack. Sncewe are
taking out the first and last steps, the number of stepsin this computation is certainly no
more than k, hence A;s generates'y by the induction hypothesis. Combine this with the
rule above, and we get aderivation for X.

Atkins —Winter 2002 CIS 420/520 Automata Theory -3-

More CFLs, Pumping Lemma Week 8 Selected Lecture Notes

For the second case where the stack does become empty in the middle, let r be the
state where that happens, and y and z be the corresponding breskdown of the input x. The
number of steps on ether sde of r isno more than k, so the induction assumption says
there must be derivations such that Ay, generatesy and Arq generates z. Since we were
clever enough to include all pair rules, we know therule Apg ® AprArg isin G, thuswe
have our derivation of X.

So where are we? We have proved our two claims about pairs of states and the
grammar derivations. In particular for the start and accept states this means that we have
proved our theorem about the equivaence of pushdown automata and CFLs.

Pumping Lemmafor CFLs. For any context free language A thereisapumping
length p such that for any string s A of length 3 p, there are substrings u, v, X, y, and z
with s = uvxyz and satisfying:

1. wxy'zl Afordli3 0

2. vy|>0

3. MylEp

So basicaly, s can be divided into five pieces, and the two middle flanking piecesv
and y can be pumped (together, not individualy). The second condition requires that a
least one of v and y not be the empty string, and the third condition keeps the middle part
close to the pumping length, even for avery long string. As before, this third condition
will sometimes be ussful in proofs.

The basc ideaof this pumping lemmaistha a sufficiently long string will have atall
enough parse tree so that we can find a repeated variable on a path through the tree.
Because of the way variable subgtitution is context free in derivations, we can either
collgpse the tree between the repested variable (thus cutting out the flanks of the subtree)
or repeat the subtree more times at the second occurrence. The picture showswhét is
gang on.

Let G bethe grammar for CFL A, and let b be the largest number of symbolsin the
right hand sde of dl rulesin G. Certainly b3 2 (otherwise, A would just consst of a
finite number of strings of terminds and the lemma would be vacuoudy true)) What is
the sgnificance of b? In a parse treg, it represents the maximum number of children of
any node. This means that in the worst case, we have b leaves a depth 1, b? leaves at
depth 2, and in generdl, at most b" leavesin a parse tree of height h. And this trandates
into astring of length a most b" when the height of the tree is h. Put another way, this
saysthat if thegtringis> b", then the height must be>h, i.e, 3 h+l.

So we choose our pumping length asfollows. If [V isthe number of variablesin G,
we choose p = bV*2, From what we saw above, any string of length 3 p (whichis
certainly >bV*) must require that the height of the treeis at least [V[+2.

Atkins —Winter 2002 CIS 420/520 Automata Theory -4-

More CFLs, Pumping Lemma Week 8 Selected Lecture Notes

Givenagringsi A with length at least p, we choose our parse tree carefully, since
there may be severa for the same string. In particular, we want the tree to be one with the
smallest number of nodes. By what we have seen about the height, we know now that
there must be a path through the tree of length at least [V |+2, which meansit has at least
[V[+1 variables (only the leaf of this path isatermind). Thisin turn implies that some
variable must be repeated among the |V|+1 variables of the nodes. We'll pick arepesting
variable R such that R repeats among the lowest [V [+1 variables (i.e, is closest to the
bottom).

n

n
X

Replacing parse trees

Now we can divide up s. We let u and z be the portions of sthat occur outside the
subtree rooted by the higher occurrence of R, we let x be the portion generated by the
subtree rooted by the lower occurrence of R, and we let v and y be the portions generated
by the upper subtree, but excluding the nested lower subtree. As mentioned earlier, either
ingance of R may be subgtituted with either subtree and ill obtain avalid tree. When we
replace the upper (larger) tree with the lower (smdler) tree, we diminate u and y. When
we replace the lower tree by the upper tree, we replace x by uxy, thus getting the

pumping up.

To see that both v and y are not the empty string, suppose that they were. Then the
subdtitution of the small tree for the large tree would il produce s, yet it would have
fewer nodes (having eiminated an R), contrary to our choice of thetree. So at least one
of v or y must be non-empty.

Atkins —Winter 2002 CIS 420/520 Automata Theory -5-

More CFLs, Pumping Lemma Week 8 Selected Lecture Notes

Findly, for the third condition, consider the length of vxy, which is generated by the
upper tree. The height of thistreeis £ |V |+2 since we made sure to choose R within the
bottom [V [+1 variables (and then there' sthe ledf to give height £ [V|+2). By our earlier

argument, the length of the string generated (namely vxy) cannot exceed b2, whichis
of course our choice for p.

Example of a Non-Context Free Language. Thelanguage A = {alb'c |k > i and k >
j} isnot acontext free language. Suppose it is context free and let p be the pumping
length and let s= &’bPc”*. When thisis redlized as uvxyz, since jvxy| £ p, vxy camot
gpan more than two different symbols. If vandy containno c's, just @sand b's, then
pumping up as uvvxyyz would incresse the count of a s and/or b's, but not ¢'s, and this
would mean the string uvvxyyz is not in the language A since the count of ¢’swould not
exceed both the counts of @ sand b’'s. Otherwise, v and y must contain ¢'s, (and might
contain b's, but no &'s). Then pumping down as uxz would decrease the count of €'s, but
leave the a s done, again meaning that uxz is not in the language since it would not have
lessa sthan c's. In either case we have reached a contradiction, so A must not be context
free.

Atkins —Winter 2002 CIS 420/520 Automata Theory -6-

