Cryptography Review

## Quiz 1

(Three minutes each)

- How can a TCP SYN attack cause a denial of service?
- How can an attacker detect what TCP-based services a server machine may be providing?

Copyright © 2003 Jun Li
All rights reserved.


## Cryptography

- Goal: keep enciphered info secret - A deep mathematical subject
- Usage: a cornerstone for secure communication
- Assumptions: attackers know the algorithm but not the key(s)
- Types: classical cryptosystems and public key cryptosystems

Copyright 02003 Jun Li.
All rights reserved.

## Four Main Topics Covered

- Classical cryptography
- Public key cryptography
- Cryptographic checksum function
- Digital signature
Copyright © 2003 Jun
All rights reserved.


## Definitions

- Cryptography: the art and science of concealing information
- Cryptoanalysis: code breaking
- Cryptosystem: basic component of cryptography
- ( $\mathcal{E}, \mathcal{D}, \mathcal{M}, \mathcal{K}, C)$
- $\mathcal{M}$ : plaintexts
- K: keys
- $C$ : ciphertexts
- $\mathcal{E}$ : enciphering functions $\mathcal{M} \times \mathcal{K} \square C$
- $\mathcal{D}$ : deciphering functions $C \times K \square \mathscr{M}$

Copyright © 2003 Jun Li
Copyright © 2003 .
All rights reserved.

## Classical Cryptosystems

- Same key for encipherment and decipherment
- Also called single-key cryptosystem
- Or symmetric cryptosystem
- For all $\mathcal{E}_{k} \square \mathcal{E}$ there is $\mathcal{D}_{k} \square \mathscr{D}$ such that

$$
\mathcal{D}_{k}=\mathcal{E}_{k}^{-1}
$$

- Examples:
- Transposition cipher
- Substitution cipher
- Vigenere cipher, One-time pad, etc.
- DES: the combination of both

Copyright © 2003 sun
Al rights reserved
All rights reserved.

## Transposition Cipher

- Characters in plaintext are rearranged
- Letters unchanged
- Rail fence cipher, as an example - "UNIV OF OREGON" becomes "UI O OEONV F RGN" or "UVFRON ENIOOG"

UI O OEO UVFRO NV F RGN N EN IOOG

Copyright © 2003 Jun Li.
All rights reserved.

## Substitution Cipher

- Characters are changed
- Caesar cipher for example, where letters are simply shifted
- Examples:
- Vigenere cipher
- One-time pad


## One-Time Pad

- A variant of the Vigenere cipher
- But key string is randomly chosen and at least as long the message!
- No repetition
- Impossible to break! Perfect secrecy :)
- Impossible to deploy either. :(

Copyright © 2003 Jun L
All rights reserved.

## Vigenere Cipher

- Use a longer key to obscure the statistics
- The length of a key is called the period of the cipher
- A tableau is used to implement cipher
- Table lookup for encipherment

Key B ENCHBENC HBENC HBENCH
Plaintext A LIMERICK PACKS LAUGHS
Ciphertext B PVOLSMPM WBGXU SBYTJZ

Copyright © 2003 Jun L
All rights reserved.

DES: Data Encryption Standard

- A classical cryptosystem
- Bit-level
- Uses both transposition and substitution
- Also referred as product cipher
- Encipherment unit: 64-bit blocks
- Input, output and keys are all in 64b blocks

Copyright © 2003 Jun
All rights reserved.

## AES: Advanced Encryption Standard

- DES is no longer as secure as designed in its early days
- 2001. NIST selects Rijndael as AES.


## Public Key Cryptography

- Use two different keys for encryption and decryption
- An entity has two keys: a public key and a private key
- Hard to derive the private key from the public key
- Examples:
- Diffie-Hellman
- RSA
- .....

Copyright © 2003 Jun Li.
Copyright 102003 .
All rights reserved.

## Properties of Public Key

- Assuming $x$ has a public key $e$ and a private key $d$
- Message encrypted with $e$ can only be decrypted by $\boldsymbol{x}$ using $d$
- Useful to send an encrypted message to $x$
- If a message can be decrypted with $e$, then it must be encrypted by $\boldsymbol{x}$ using $d$
- Useful to verify whether or not a message is from $x$

Copyright © 2003 Jun Zi
All rights reserved.

## Cryptographic Checksums

- Motivating question: How can Bob verify messages received from Alice is not changed?
- Answer: digital signature
- Which relies on cryptographic checksum function
- Digital signature will be covered later
- Cryptographic checksum function also has many other usages
- Such as S/Key protocol (used in Authentication)

Copyright © 2003 Jun L
Copyright © 2003
All rights reserved.

## Combine Confidentiality and Authentication

- For confidentiality, the message has to be encrypted with B's public key
- So that B's private key has to be used to decrypt - But only B knows B's private key
- For origin authentication, the message has to be encrypted with A's private key
- So that A's public key has to be used to decrypt
- Everybody knows A's public key
- Question: can we switch the two above?

Copyright $\odot 2003$ Jun L
All rights reserved.

## Cryptographic Checksum Function

- Also called strong hash function
- Or strong one-way function
- $h: A \square B$
- For any $x \square \mathrm{~A}, h(x)$ is easy to compute
- For any y $\square \mathrm{B}$, computationally infeasible to find $x \square$ A such that $h(x)=y$
- No collision pairs

[^0]
## Prevention of Collision Pairs

- Statement A:
- Computationally infeasible to find $x, x^{\prime} \square$ A such that
- Statement B:
- Given any $x \square \mathrm{~A}$, computationally infeasible to find another $x^{\prime} \square \mathrm{A}$ such that
$x \neq x^{\prime}$ but $h(x)=h\left(x^{\prime}\right)$
- Statement B is much harder than statement A.

```
Copyright@2003 Jun Li
```

All rights reserved.

## Keyed or Keyless Cryptographic Checksum

- A keyed cryptographic checksum requires a cryptographic key as part of hashing computation - E.g. DES-MAC
- DES is in CBC mode (covered later)
- Use last enciphered block output as the hash result
- DES needs a key
- A keyless cryptographic checksum does not - MD2, MD4, MD5
- SHA-1 (Secure Hash Algorithm)
- Snefru
- HAVAL

Copyright © 2003 Jun L
Copyright © 2003.
All rights reserved.

## Digital Signature

- A digital signature is a construct that authenticates both the origin and contents of a message in a manner that is provable to a disinterested third party.
- Provides a service of nonrepudiation


## Classical Signature Verification

- Verification question: is $\boldsymbol{m}$ created by Alice?
- Verification method:
- Judge Takes the disputed messages $\{\boldsymbol{m}\} \boldsymbol{k}_{A, C} \&\left\{\{\boldsymbol{m}\} \boldsymbol{k}_{\boldsymbol{B}, \boldsymbol{C}}\right.$
- Ask Cathy to decrypt $\{\boldsymbol{m}\} \boldsymbol{k}_{A, C}$ using $\boldsymbol{k}_{A, C}$ and $\{\boldsymbol{m}\} \boldsymbol{k}_{B, C}$ using $\boldsymbol{k}_{B, C}$ - And compare
$\left\{\{m\} k_{A, C}\right\} k_{A, C}=\left\{\{m\} k_{B, C}\right\} k_{B, C} ?$
Copyright © 2003 Jun
All rights reserved.
Copyright © 2003 ald
All rights reserved.


## Public Key Signature

- Instead of using $\{\boldsymbol{m}\} \boldsymbol{d}_{\text {Alice }}$, Alice actually signs the message as

$$
\{\boldsymbol{h}(\boldsymbol{m})\} d_{\text {Alice }}
$$

where $\boldsymbol{h}$ is a cryptographic hash function

- And sends Bob

$$
\boldsymbol{n}\{\boldsymbol{h}(\boldsymbol{m})\} d_{\text {Alice }}
$$

- $\mathrm{Q}:$ how does Bob verifies the signature?
Copyright © 2003 Jun
All rights reserved.


## Cipher Techniques

- Cipher techniques must be used wisely
- Very sensitive to the environment
- A mathematically strong cryptosystem is vulnerable when used incorrectly
- Examples include: precomputing the possible messages, misordered blocks, and statistical regularities.
- So we introduced block cipher and stream cipher, and try to strengthen both!

Copyright © 2003 Jun L
All rights reserved.

## Precomputing Possible Messages

- Simmon's Attack: "Forward search" technique
- Alice will send Bob one of two messages: BUY or SELL, enciphered with $e_{B o b}$
- Eve does not which one, but
- Eve knows it's one of the two
- Eve precomputes the \{"BUY"\} $e_{B o b}$ and \{"SELL"\} $e_{B o b}$
- When Alice sends Bob a message, Eve intercept it and compare with the precomputed ciphertext
- Then Eve knows what's the plaintext!
- Problem: the set of plaintext if small

Copyright © 2003 Jun Li.
All rights reserved.

## Statistical Regularities

- When each part is enciphered separately, the same plaintext will produce the same ciphertext
- Thus regularity arises
- Making cryptanalysis easy
- This type of encipherment is called code book mode

```
Copyright@2003 Jun L
Copyright (2003)
```

Copyright © 2003 Jun L
All rights reserved.

## Misordered Blocks

- Denning: part of ciphertext can be deleted, replayed, or reordered

$$
\begin{aligned}
& \text { LIVE } \rightarrow 44572116 \rightarrow 16215744 \\
& \hline \text { LIVE } \rightarrow 44572116 \rightarrow 445716 \\
& \rightarrow \text { EVIL } \\
& \hline \text { LIE }
\end{aligned}
$$

- Each part can be signed
- But if signed separately, will it work?
- Problem: each part is encrypted independently

Examples of Incorrect Cryptosystem Usage

- Precomputing the possible messages
- Misordered Blocks
- Statistical Regularities

Copyright $\odot 2003$ Jun Ll
All rights reserved.

- Block Cipher
- Stream Cipher

Copyright $\odot 2003$ Jun L
All rights reserved.

## Block Cipher

- $E$ : an encipherment algorithm
- $E_{k}(b)$ : encipherment of msg $b$ with key $\boldsymbol{k}$
- Message $m=b_{1} b_{2} \ldots$,
- where each $b_{i}$ is of fixed length
- Block cipher : $E_{k}(m)=E_{k}\left(b_{1}\right) E_{k}\left(b_{2}\right) \ldots$
- Q: is DES a block cipher?

Copvright © 2003 Jun Li.
Copyright O 2003 J
All rights reserved.

## Block Cipher (cont'd)

- Multiple bits each time
- Faster than stream cipher in software implementations
- But an identical plaintext block will produce an identical ciphertext block - If using the same key

Copyright © 2003 Jun Li
Copyright © 2003J,
All rights reserved.

## Strengthening Block Cipher

1. Insert extra bits into a block, often related to block position

- Sequence number of a block
- Bits from preceding ciphertext block

2. Cipher block chaining (CBC)
$-c_{0}=E_{k}\left(m_{0} \oplus I\right)$
$-c_{i}=E_{k}\left(m_{i} \oplus c_{i-1}\right)$ for $i>0$

Copyright © 2003 Jun Li.
All rights reserved.

Three Common Modes of DES

- CBC : Cipher Block Chaining
- EDE: Encrypt-Decrypt-Encrypt
- Triple DES: DES-DES-DES
(cont'd)

3. Encrypt-Decrypt-Encrypt (EDE)
$c=E_{k}\left(D_{k^{\prime}}\left(E_{k}(m)\right)\right)$
4. Triple Encryption Mode
$c=E_{k}\left(E_{k^{\prime}}\left(E_{k^{\prime}}(m)\right)\right)$

- Consider applying CBC, EDE, or triple Encryption to DES!

Copyright 102003 Jun Z
All right reserver
All rights reserved.


## EDE

- Two 64-bit keys: $k$ and $k^{\prime}$

$$
c=D E S_{k}\left(D E S_{k^{\prime}}^{-1}\left(D E S_{k}(m)\right)\right)
$$

## Triple DES

- Three 64-bit keys: $k$, $k^{\prime}$, and $k^{\prime \prime}$

$$
c=D E S_{k}\left(D E S_{k^{\prime}}\left(D E S_{k^{\prime \prime}}(m)\right)\right)
$$

Copyright © 2003 Jun Li
All rights reserved.

## Stream Cipher

- $E$ : an encipherment algorithm
- $E_{k}(b)$ : encipherment of msg $b$ with key $\boldsymbol{k}$
- Message $m=b_{1} b_{2} \ldots$, Key $k=k_{l} k_{2} \ldots$,
- where each $b_{i}$ is of fixed length
- Stream cipher : $E_{k}(m)=E_{k l}\left(b_{1}\right) E_{k 2}\left(b_{2}\right) \ldots$
- Q: is Vigenere a stream cipher?
- Yes, and also a periodic stream cipher

Copyright © 2003 Jun Li
All rights reserved.

## Types of Stream Ciphers

- Two types, depending on how keys are generated:
- Synchronous stream cipher
- Self-synchronous stream cipher


## Synchronous Stream Ciphers

- Generates bits of a key from a particular source
- Not from the message itself
- Hopefully the newly generated key is random and long
- Several techniques
- LFSR (Linear feedback shift register)
- NLFSR (Nonlinear feedback shift register)
- Output feedback mode
- Counter method

Copyright © 2003 Jun L
All rights reserved.

- An $n$-bit register $r=r_{n-1} \ldots r_{0}$ (a variable)
- An $n$-bit tap sequence $t=t_{n-1} \ldots t_{0}$ (a constant)
- Use $r_{0}$ as current key bit
- Right shift $r$, and $r_{n-1}=\left(r_{n-1} \bullet t_{n-1}\right) \oplus \ldots \oplus\left(r_{0} \bullet t_{0}\right)$

| $t=1001$ | current reg | key | new $r_{n-1}$ bit | new reg |
| :--- | :--- | :---: | :--- | :--- |
| 0010 | 0 | $01 \oplus 00 \oplus 10 \oplus 01=0$ | 0001 |  |
| 0001 | 1 | $01 \oplus 00 \oplus 00 \oplus 11=1$ | 1000 |  |
|  | 1000 |  |  |  |

NLFSR (nonlinear feedback shift register)

- New bit is a function of current register bits
- No tap sequence used

| current reg | key | new $r_{n-1}$ bit | new reg |
| :--- | :---: | :---: | :---: |
| 0010 | $\mathbf{0}$ | $f(0,0,1,0)=\mathbf{0}$ | 0001 |
| 0001 | $\mathbf{1}$ | $f(0,0,0,1)=0$ | 0000 |
| 0000 |  |  |  |
|  | $f=r_{3}$ or $\left(r_{2}\right.$ and $\left.r_{0}\right)$ |  |  |
| 2003 Jun Li. |  |  |  |
| served. |  |  |  |

Copyright $\odot 2003$ Jun
All rights reserved.
All rights reserved.

## Output Feedback Mode

$m$ : the message to encrypt
$E$ : encipherment function
$k$ : a cryptography key
$r$ : a register

- $r=E_{k}(r)$
- $k_{i}=r_{0}$ (r's rightmost bit)
- $c_{i}=m_{i} \oplus k_{i}$

Copyright © 2003 Jun Li
Copyright © 2003 Jhil
All rights reserved.

## Counter Method

$m$ : the message to encrypt
$E$ : encipherment function
$k$ : a cryptography key
$i_{0}$ : initial value of a counter

- $k_{i}=\left(i+i_{0}\right)$ 's rightmost bit (for $i=0,1,2, \ldots$ )
- $c_{i}=m_{i} \oplus k_{i}$

Copyright © 2003 Jun L
All rights reserved.
All rights reserved.

## (cont'd)

- If using plaintext, key selection is an issue
- Key will display same statistical regularities as it's derived from plaintext
- If using ciphertext, weak
- A character in ciphertext $=f(X$, a previous chacter in ciphertext)

```
Copyright © 2003 Jun
```

Copyright © 2003 .
All rights reserved.

## Cipher Feedback Mode

$m$ : the message to encrypt
$E$ : encipherment function
$k$ : a cryptography key
$r$ : a register

- $x=E_{k}(r)$
- $r=x_{n-1} r_{n-1} \ldots r_{1}$
- $c_{i}=m_{i} \oplus x_{0}\left(x_{0}\right.$ is $x$ 's rightmost bit)

Copyright © 2003 Jun $L$
Copyright © 2003
All rights reserved.

## Authentication

- Authentication is the binding of an identity to a subject, which is acting on behalf of an entity
- Or, the binding of an identity to an entity
- How?
- What the entity knows (e.g.passwords)
- What the entity has (e.g. a badge)
- What the entity is (e.g. fingerprints)
- Where the entity is (e.g. in front of a particular terminal)
- ....

Copyright © 2003 Jun Li
Copyright © 2003 J
All rights reserved.

## Authentication Process

- Obtain authentication info from an entity
- Analyze the info
- Determine whether or not the info is associated with the entity
- For the purpose of analysis, the entity's info must be stored and managed
- An authentication system

Copyright © 2003 Jun Li.
Copyright © 2003 Ju
All rights reserved.

## Authentication System

- $\boldsymbol{A}$ : the set of authentication info with which entities prove their identities
- $C$ : the set of complementary info that the system stores and uses to validate the authentication info
- $\boldsymbol{F}$ : the set of complementation functions that for $f \square F, f: A \square C$
- $L$ : the set of authentication functions that for $l \square L, l: A \square C \square$ \{ true, false $\}$
- $\boldsymbol{S}$ : the set of selection functions that enable an entity to create/alter authentication and complementary info

Copyright © 2003 Jun Li
All right reserved
All rights reserved.

## Passwords

- A password is information associated with an entity that confirms the entity's identity
- Simplest example: some sequence of characters
- e.g., login, su, etc. in Unix
- $C$ may not be the same as $A$
- Mostly because $C$ must be protected
- e.g., /etc/passwd (or shadow password files) in Unix
- $F$
$-f \square F$ is based upon DES in Unix
- $S$
- e.g., passwd command in Unix

Copyright © 2003 Jun L
Copyright © 2003 ,
All rights reserved.

## Authentication Systems

- Password
- Challenge-Response
- One-time password - S/Key
- Hardware-supported challenge-response
- Biometrics
- Location
- Etc.

Copyright © 2003 Jun Li
All rights reserved.

## Challenge-Response

- Fundamental flaw of passwords: reusability
- Can be replayed if known before
- What if every time one uses different authentication information
- In a challenge-response authentication system
- User $U$ and System $S$ share a secret function $f$
- $S$ sends a random message m (challenge)
- $U$ replies with $r=f(m)$ (response)
$-S$ validates $r$ by computing it separately

Copyright © 2003 Jun Li.
All rights reserved.

## One-Time Password

- One-time password: a password that is invalidated as soon as it is used
- Also a challenge-response mechanism
- Challenge: the number of authentication attempt
- Response: the one-time password


## S/Key

- $h$ : a one-way hash function
- $k$ : an initial seed chosen by the user
keys: $\quad h(k)=k_{1}, h\left(k_{1}\right)=k_{2}, \quad \ldots, \quad h\left(k_{n-1}\right)=k_{n}$
passwds: $p_{1}=k_{n}, \quad p_{2}=k_{n-1}, \ldots, p_{n-1}=k_{2}, \quad p_{n}=k_{1}$
If Eve intercepts $p_{i}$, we know $p_{i}=h\left(\mathbf{p}_{i+1}\right)$, and $h$ is a one-way hash function, so $\mathrm{p}_{i+1}$ cannot be derived from $p_{i}$.
Copyright © 2003 Jun All rights reserved.


## Hardware-Supported ChallengeResponse Procedures

- Token device
- System sends a challenge
- User enters it into the device (PIN maybe needed)
- The device returns a response, by hashing (or enciphering) the challenge
- The user sends the response over

Copyright O 2003 Jun L
All rights
All rights reserved.
Copyright © 2003 Jun L
All rights reserved.

## (cont'd)

- Temporally based device
- Every 60 seconds, a different number displayed
- The system knows what number to be displayed for a user
- When the user logs in, he enters the number currently shown
- Followed by a fixed password
- e.g., RSA SecureID card


## Biometrics

- As old as humanity
- Fingerprints
- Voices
- Eyes
- Faces
- Keystrokes
- Combinations

Copyright © 2003 Jun L
Copyright © 2003 .
All rights reserved.

## Location

- Anna is logging from Russia
- But we know she is now working at California
- Dennis and MacDoran's scheme: use Global Positioning System (GPS)
- An entity obtains a location signature using GPS
- Transmits it
- The System uses a location signature sensor (LSS) to obtain a similar location signature
- Compare the two signatures to authenticate

Copyright © 2003 Jun Li
All rights reserved.


[^0]:    Copyright © 2003 Jun
    All rights reserved.

