
IPsec

Copyright © 2003 Jun Li. All rights reserved.

IPsec as a Real-Time Protocol

- A real-time protocol is one where parties negotiate interactively to authentication each other and establish a session key
 - The conversation protected using the session key is called **security association**
- Examples: IPsec, SSL/TLS, SSH
 - Public key based

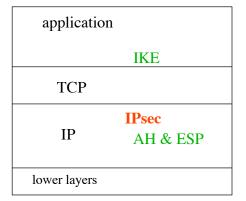
Pros and Cons

- Security at layer 4 (SSL/TLS/SSH)
 - + No need to change OS
 - Applications have to be modified
 - No way to tell TCP layer whether newly received data is bogus or real
 - Such as a sequence number attack
- Security at layer 3 (IPsec)
 - + Transparent to applications
 - OS needs to modified
 - Security is in terms of IP addresses
 - IPsec authentication cannot distinguish between users

IPsec User Model

- Alice and Bob sets up a secure channel
 - Called **Security Association**
- Then rely on IPsec to protect the channel

Copyright © 2003 Jun Li. All rights reserved.


What does IPsec Accomplish?

- Encrypted traffic
- Connectionless Integrity
- Anti replay
- More secure authentication based on source IP address
- Enforced access control based on a policy database
- Similar to set up two firewalls between two ends

Main Pieces

- AH & ESP
 - IP header extensions for carrying cryptographically protected data
- IKE
 - A protocol for establishing security associations
 (SA) and establishing session keys
 - Not required for IPsec but recommended
 - IPsec also supports manual SAs/keying

Copyright © 2003 Jun Li. All rights reserved.

IPsec Deployment

- Individual host: an end system can implement its own protection end-to-end or hop-by-hop
- Host community: a single security gateway (e.g. a firewall) can protect an entire domain of hosts
- Pairings: host-to-host, host-to-gateway, gatewayto-gateway
 - Or combined

Copyright © 2003 Jun Li. All rights reserved.

Security Association

- An unidirectional cryptographically protected connection
 - Communication between Alice and Bob consists of two SAs, one for each direction
- Each end remembers:
 - Id of the other end
 - A cryptographic key
 - Sequence number currently being used
 - Cryptographic services being used
 - Integrity only, encryption only, or both
 - Which cryptographic algorithms

Copyright © 2003 Jun Li

Security Association Database

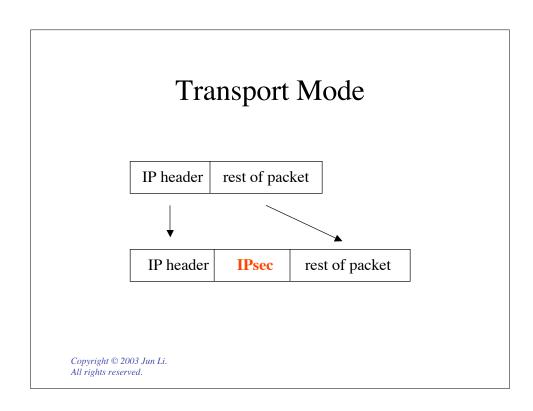
- A security association database (**SAD**) is used to remember those info above for every **active** security association
 - Indexed by security parameter index (SPI)
- Thus an IPsec-capable node knows how to communicate with a given destination
 - A packet from Alice to Bob should tell Bob the SPI value that Bob can use to locate the Alice-Bob SA entry in his SAD

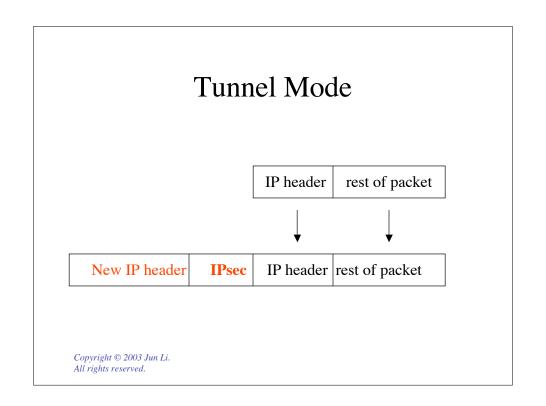
Copyright © 2003 Jun Li. All rights reserved.

AH & ESP

- AH provides integrity protection
 - For payload and some fields in IP header
- ESP provides encryption and/or integrity protection
 - For payload
 - The encryption algorithm can be "null" or others

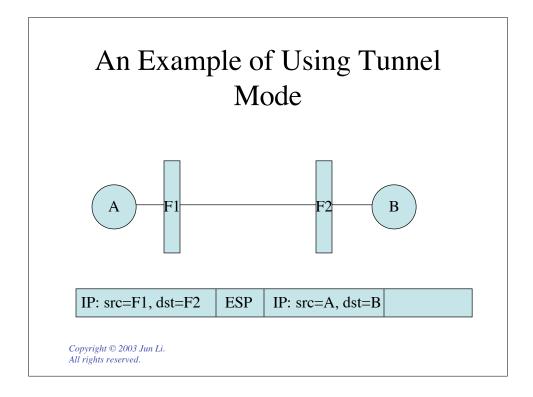
Copyright © 2003 Jun Li.

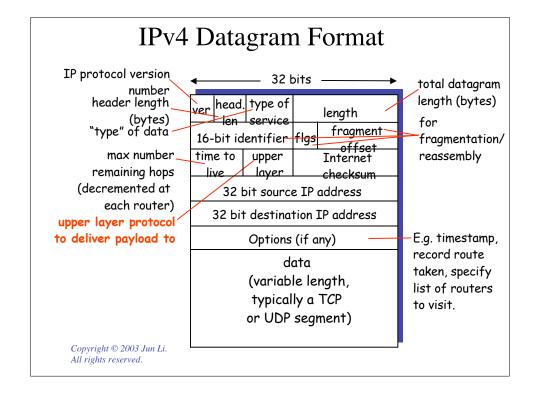

A Side Effect of IPsec on Firewall


- If a packet is protected using ESP, a firewall won't be able to inspect the payload of the packet
 - A firewall has even no idea whether the payload is encrypted or not
 - Recall the encryption algorithm could be "null"

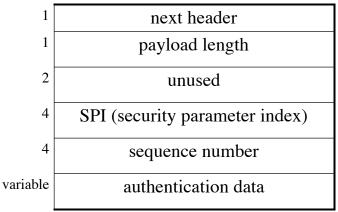
Copyright © 2003 Jun Li. All rights reserved.

Two IPsec Modes


- Transport mode
- Tunnel mode


Mode Selection

- Transport mode is most logical when applying IPsec for end-to-end communication
- A tunnel mode is good for firewall-to-firewall, or end-to-firewall


Format of IPsec-Protected Packets

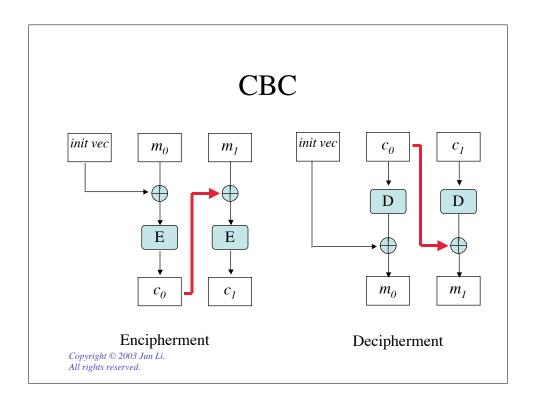
- A field in the IP header points to AH header or ESP header
 - "Protocol" field in IPv4
 - "Next header" field in IPv6
 - -ESP = 50
 - -AH = 51
 - (TCP = 6, UDP = 17)

AH - Authentication Header

Copyright © 2003 Jun Li. All rights reserved.

AH Fields

- Next header
 - Same as "protocol" field in IPv4
 - If TCP follows the AH header, this field is 6
- Payload length:
 - The size of the AH header (in 32-bit chunks)
- SPI
 - For the recipient to locate the SA entry in its SAD
- Sequence number:
 - For anti-replay purpose
- Authentication data
 - Cryptographic integrity check
- Those immutable and mutable-but-predictable fields in an IP header are also protected Copyright © 2003 Jun Li.
 All rights reserved.


ESP - Encapsulating Security Header

# octets	3
4	SPI (security parameter index)
4	sequence number
variable	IV (initialization vector)
variable	data
variable	padding
1	padding length
1	next header / protocol type
variable	authentication data

Copyright © 2003 Jun Li. All rights reserved.

ESP Fields

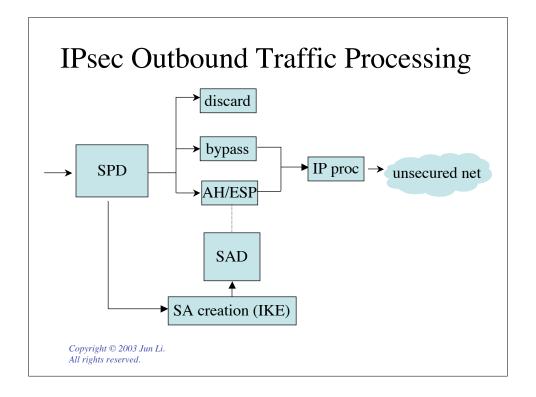
- Same fields as in AH header:
 - SPI, sequence number, next header
- Initialization vector
 - Needed for some encryption algorithms
 - for example, when CBC mode is used (see next slide)
- Data: protected data, probably encrypted
- Padding: many 0's mainly in order to
 - make data be a multiple of a block size
 - Maybe required by adopted cryptographic algorithms
 - Or make [data, padding, padding length, next header] a multiple of four octets

(cont'd)

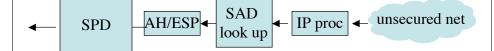
- Authentication data
 - Cryptographic integrity check
 - Zero length if ESP is providing only encryption

More on the Data Field in an ESP Header

- In Tunnel Mode
 - Begin at the IP header
- In Transport Mode
 - Begin at the IP payload
 - Begin at TCP header if a TCP payload


Copyright © 2003 Jun Li. All rights reserved.

Security Policy Database


- An ordered list of SPD entries
- Each SPD entry specifies a policy: applicability, disposition, and protection
- Applicability: which packets are subject to policy
- Disposition: discard, bypass, or apply IPsec
- Protection: what kinds of SA to apply under this policy

An Example of SPD entry

- Outbound SPD entry example:
 - IP: source=175.34.*.* destination=98.34.32.6
 - Protocol = 6 (TCP)
 - Port: source=any, destination=80
 - Disposition = IPsec
 - Protection = Details on what kind of SA to set up (e.g. ESP tunnel mode, DES, . . .)
- Similarly an inbound SPD entry can be defined

IPsec Inbound Traffic Processing

Copyright © 2003 Jun Li. All rights reserved.

IPsec: IKE

Goal of IKE

- To do mutual authentication using longterm key
 - The long term key can be a public key
 - Or a pre-shared secret key
- And establish a session key

Copyright © 2003 Jun Li. All rights reserved.

Three Pieces of IKE

- ISAKMP (Internet Security Association and Key Management Protocol)
 - RFC 2408
- IKE
 - RFC 2409
- DOI (Domain of Interpretation)
 - RFC 2407

Two Phases of IKE

- Phase 1: mutual authentication and session key establishment between Alice and Bob
 - Phase-1 exchange known as ISAKMP SA
 - Defined by ISAKMP (RFC 2408)
- Phase 2: multiple SAs between Alice and Bob
 - Phase-2 exchange creates IPSEC SA
 - Defined by IKE (RFC 2409?)

Copyright © 2003 Jun Li. All rights reserved.

Why Two Phases?

- Multiple protocols
 - ISAKMP is not just for IPsec
- Multiple flows for Alice and Bob
 - Each needs a different SA

Phase 1 IKE

- Aggressive mode
 - Using 3 messages
- Main mode
 - Using 6 messages
 - And achieves additional functionalities
 - Hide endpoint id
 - Negotiate cryptographic algorithms
 - Etc.
- Both use Diffie-Hellman

Copyright © 2003 Jun Li. All rights reserved.

Diffie-Hellman

- First public key cryptosystem
 - Still in use today
- Used to generate a **common** key by two users

Discrete Logarithm Problem

• Find a value of k such that

$$K = g^{\mathbf{k}} \bmod p$$

for a given K, g, and prime p.

- Difficulty increases exponentially as *p* increases
- This is the basis of Diffie-Hellman

Copyright © 2003 Jun Li. All rights reserved.

Algorithm

- All users share p and g
- Each user u chooses a private key k(u) and a public key K(u)

$$K(u) = g^{k(u)} \mod p$$

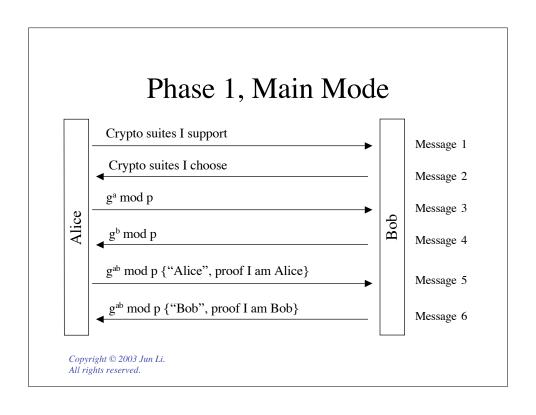
When users A and B communicate,

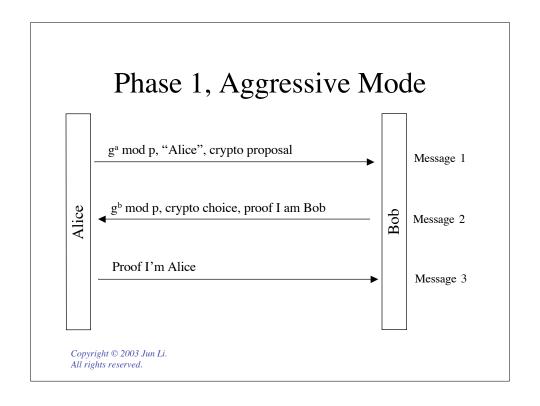
A:
$$s(A) = E_{k(A)}(K(B)) = K(B)^{k(A)} \mod p$$

B:
$$s(B) = E_{k(B)}(K(A)) = K(A)^{k(B)} \mod p$$

s will be used as the secret key for A-B communication.

When A sends out a message encrypted with s, only the one who holds (k(B), K(B)), which is B here, can decrypt!

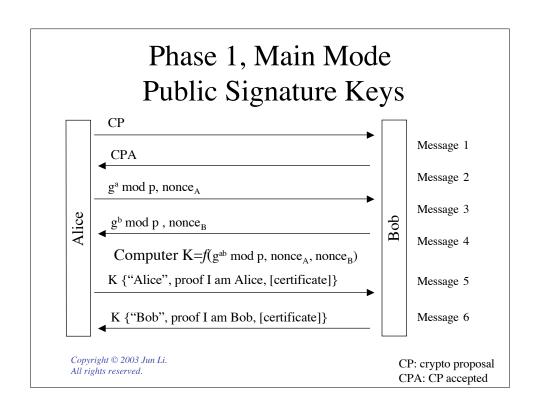

Example

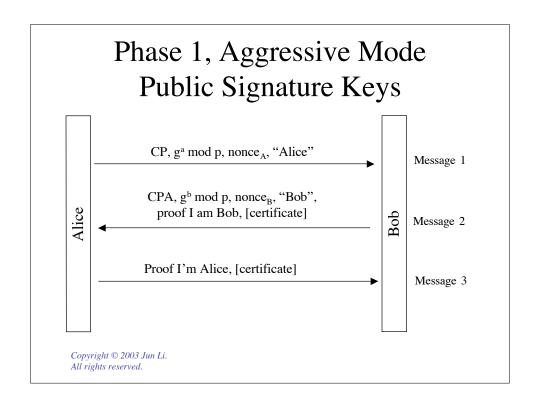

- Alice and Bod chose p = 53, g = 17
- k(Alice) = 5, k(Bob) = 7
- $K(Alice) = 17^5 \mod 53 = 40$ $K(Bob) = 17^7 \mod 53 = 6$
- Alice: $K(Bob)^{k(Alice)} \mod p = 6^5 \mod 53 = 38$ Bob: $K(Alice)^{k(Bob)} \mod p = 40^7 \mod 53 = 38$

Copyright © 2003 Jun Li. All rights reserved.

Diffie-Hellman Summary

- Based on the computational infeasibility to derive the private key of a public key
 - -p must be very large (hundreds of bits)
- Diffie-Hellman is an example of **symmetric key exchange protocol**


Negotiating Crypto Parameters


- Alice and Bob can negotiate various crypto methods
 - Encryption
 - Hash algorithm
 - Diffie Hellman parameters (only for main mode)
 - Authentication method
- Typically Alice provides an ordered list, and then Bob selects

Copyright © 2003 Jun Li. All rights reserved.

Four Authentication Method

- Totally four authentication methods, depending on what type of long-term keys that Alice and Bob hold
 - Original public encryption key
 - Revised public encryption key
 - Public signature key
 - Pre-shared secret key
 - We focus on public key signature below
- Thus, totally eight variants of Phase 1 (remember it has two modes)

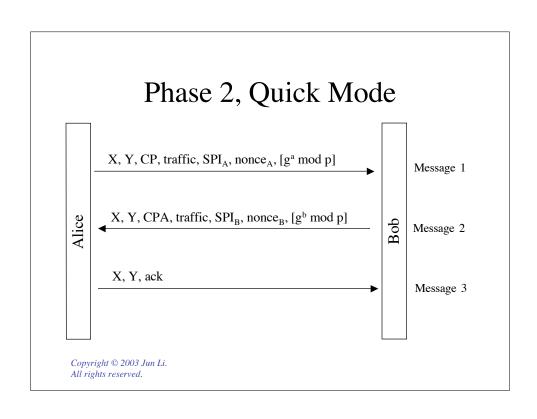
Two Session Keys

- An integrity key
- An encryption key
- Used to protect some Phase 1 messages and ALL phase 2 IKE messages

Copyright © 2003 Jun Li. All rights reserved.

Session Key Generation

- A pseudo random function
 - Hash result = prf (key, data)
 - Example: DEC CBC residue, or HMAC
- SKEYID = prf(nonces, g^{xy} mod p)
- $\bullet \ \ SKEYID_d = prf(SKEYID, (g^{xy} \ mod \ p, cookies, 0))$
- Integrity key (Kinc)
 - SKEYID_a = prf(SKEYID, (SKEYID_d, (g^{xy} mod p, cookies, 1)))
- Encryption key (Kenc)
 - SKEYID_e = $prf(SKEYID, (SKEYID_a, (g^{xy} mod p, cookies, 2)))$


Proof of Identity

- To prove the sender knows the key associated with the identity
 - E.g., Alice or Bob's private signature key
- IKE definition for the Proof "I'm Alice"
 - prf(SKEYID, (g^x, g^y, cookies, Alice's initial CP, Alice's identity))
- IKE definition for the Proof "I'm Bob"
 - prf(SKEYID, (g^y, g^x, cookies, Alice's initial CP, Bob's identity))

Copyright © 2003 Jun Li. All rights reserved.

Phase-2 IKE: Setting Up IPSEC SAs

- Known as Quick Mode
- A 3-message protocol that negotiates parameters for the phase-2 SA
 - Crypto parameters
 - SPI (still remember what's this?)
- All messages are encrypted with K_{enc} and integrity protected with K_{int}

