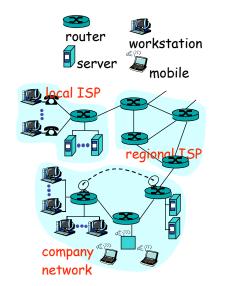
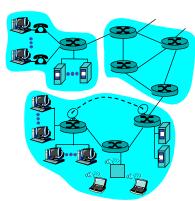

An Overview of Network Security

Copyright © 2003 Jun Li. All rights reserved.

Coverage


- Lower Layers
- Upper Layers
- The Web
- From Security Point of View

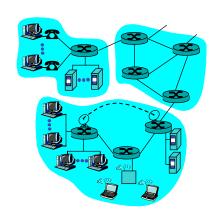
What's the Internet: "nuts and bolts" view


- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, FTP, PPP
- Internet: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

Copyright © 2003 Jun Li. All rights reserved.

What's the Internet: a service view

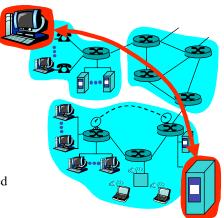
- communication *infrastructure* enables distributed applications:
 - Web, email, games, e-commerce, database., voting, file (MP3) sharing
- communication services provided to apps:
 - connectionless
 - connection-oriented



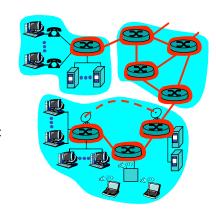
• cyberspace [Gibson]:

"a consensual hallucination experienced daily by billions of operators, in every nation,"

A closer look at network structure:


- network edge: applications and hosts
- network core:
 - routers
 - network of networks
- access networks, physical media: communication links

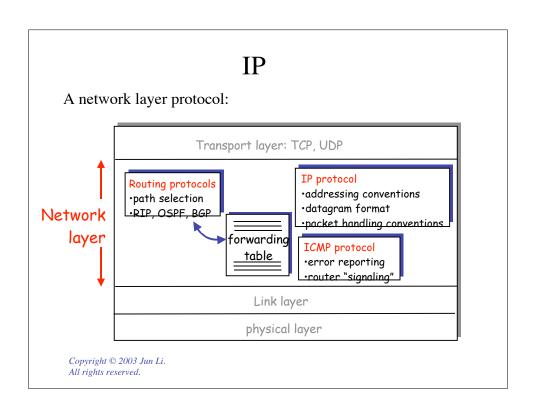
Copyright © 2003 Jun Li. All rights reserved.

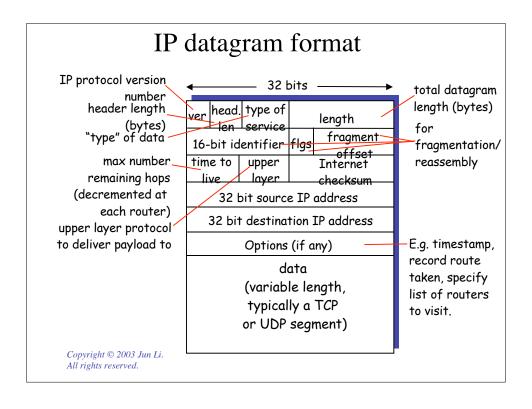

The network edge:

- end systems (hosts):
 - run application programs
 - e.g. Web, email
 - at "edge of network"
- client/server model
 - client host requests, receives service from always-on server
 - e.g. Web browser/server; email client/server
- peer-peer model:
 - minimal (or no) use of dedicated servers
 - e.g. Gnutella, KaZaA

The network core

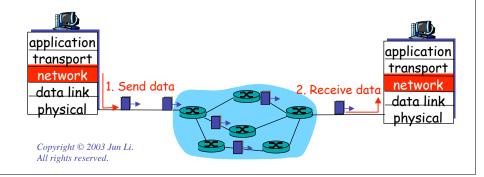
- mesh of interconnected routers
- <u>the</u> fundamental question: how is data transferred through net?
 - circuit switching: dedicated circuit per call: telephone net
 - packet-switching: data sent thru net in discrete "chunks"




Copyright © 2003 Jun Li. All rights reserved.

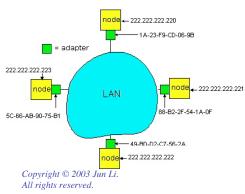
Lower Layers

- IP
- ARP
- ICMP
- TCP
- UDP
- SCTP


- Routing Protocols
 - RIP, OSPF, BGP
- DNS
- BOOTP & DHCP
- IPv6
- NAT
- Wireless Security

IP Packet Forwarding

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of "connection"
- packets forwarded using destination host address
 - packets between same source-dest pair may take different paths



IP Security Issues

- IP Spoofing
 - Forged source address
 - Any host can transmit a packet with any source address
- Packet inception
 - Man-in-the-middle attack
- What else?

ARP: Address Resolution Protocol

Question: how to determine MAC address of B knowing B's IP address?

- Each IP node (Host, Router) on LAN has ARP table
- ARP Table: IP/MAC address mappings for some LAN nodes
 - < IP address; MAC address; TTL>
 - TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

ARP Security Issues

- Problematic if an untrusted node has write access to the local net
- ARP spoofing
 - Use phony queries or replies
 - Such that all/some traffic misdirected
- What else?

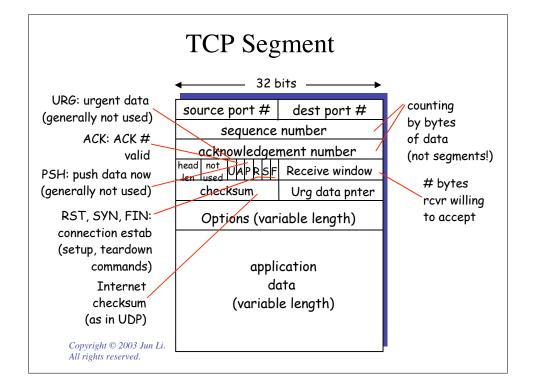
ICMP: Internet Control Message Protocol

- used by hosts, routers, gateways to communication network-level information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

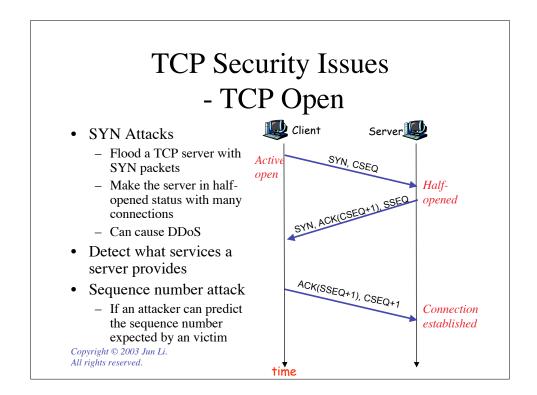
<u>i ype</u>	<u>Code</u>	<u>description</u>
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Copyright © 2003 Jun Li. All rights reserved.


ICMP Security Issues


- ICMP can be abused to tear down connections
- Can also be abused to create new paths to a destination
 - Using the REDIRECT ICMP message
- Block ICMP messages at firewalls?

- point-to-point:
 - one sender, one receiver
- reliable, in-order byte steam:
 - no "message boundaries"
- pipelined:
 - TCP congestion and flow control set window size
- send & receive buffers


- full duplex data:
 - bi-directional data flow in same connection
 - MSS: maximum segment size
- connection-oriented:
 - handshaking (exchange of control msgs) init's sender, receiver state before data exchange
- flow controlled:
 - sender will not overwhelm receiver

TCP Security Issues

- TCP open
- TCP privileged ports
- TCP stream vs. firewall

TCP Security Issues - Privileged ports

- What are privileged ports
 - A unix convention that only can be created by the *root*
 - Less than 1024
 - Goal: remote systems can trust the authenticity of into written to such ports
- This goal really is just a hope
 - Not required by TCP specification
 - Meaningless on non-Unix systems
 - One may not necessarily trust the sanctity of a privileged port

Copyright © 2003 Jun Li. All rights reserved.

TCP Security Issues - TCP Stream vs. Firewall

- With TCP, data flows like a stream
 - There is no boundary
 - Thus hard for a firewall to filter individual packets

TCP Security Issues

• What else?

Copyright © 2003 Jun Li. All rights reserved.

UDP

- Extends to applications the same level of service used by IP
 - Best-effort delivery
- Security Issues
 - UDP has no flow control, etc.
 - Large UDP transmissions may swamp the network
 - Certainly still has the IP spoofing problem
 - What else?

SCTP

- A new transport protocol (stream control transmission protocol)
- Read the brief description from course reserve materials

Copyright © 2003 Jun Li. All rights reserved.

Routing Protocols

- Routing is the process of discovering, selecting, and employing paths from sources to destinations
- Often asymmetric
- RIP, OSPF, IS-IS, BGP, etc.

Security Issues

- Some routing options can be abused
 - Source routing
- A routing protocol itself can be subverted
 - Inject bogus routing updates, for example
 - A good router may be cheated to spread deceptive routing updates
 - A router could be compromised

Copyright © 2003 Jun Li. All rights reserved.

BGP Security Issues

- BGP is a routing protocol for the core of the Internet at AS level
 - Routing announcements are exchanged via TCP
- Corrupt announcements can be used to perform a variety of attacks
 - An attacker can play BGP games
 - Can eavesdrop on, hijack or suppress BGP sessions
 - And other attacks

DNS

- A distributed database that maps hostnames to IP addresses, or vice versa
- Two logically distinct tree-structured namespaces
 - One for name to IP address (forward mapping), the other for IP address to name (backward mapping)
- Transport protocols for DNS
 - DNS query is UDP-based
 - But zone transfer is TCP-based
 - For backup servers to get a full copy of their portion in the name space

Copyright © 2003 Jun Li. All rights reserved.

DNS Security Issues

- An attacker in control of the inverse mapping tree
 - A non-trusted IP address may thus map to a trusted name
 - Well, easy to deal if the forward mapping tree is authentic (cross-checking)
 - The attacker can further try to poison the victim's DNS cache
- Omission of a trailing period
 - "foo.com" will be tried as "foo.com.cs.uoregon.edu" then "foo.com.uoregon.edu" then "foo.com.edu" then "foo.com"
 - What if an attacker builds a name server for "com.edu" domain?

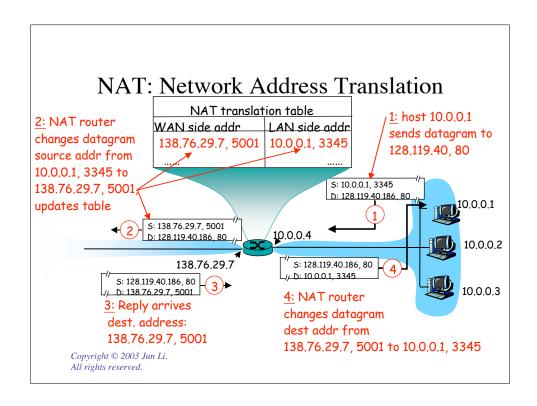
BOOTP & DHCP

- DHCP is an extension of the simpler BOOTP
- Through a DHCP server, a client can obtain a lot of info
 - IP address
 - DNS server
 - Default route address
 - Default domain name, or even
 - NTS server
 - etc.

Copyright © 2003 Jun Li. All rights reserved.

DHCP Security Issues

- DHCP runs on a LAN
 - Thus less security concerns
- But still subject to man-in-the-middle and DOS attacks
 - Essentially same security issues as ARP
- A rogue DHCP server?
- Applying for DHCP service endlessly?
 - To deplete available IP addresses for a local domain
- What else?


IPv6

- Same philosophy as IPv4 as an unreliable best-effort delivery protocol
- Allows interesting address types
 - Anycast adrdresses
 - Multiple machines map to the same address
 - Site-local addresses
 - Some addresses are purely local to a "site"
 - Link-local addresses
 - Limited to a single link
- New protocols
 - Neighbor Discovery protocol (similar to ARP)
 - DHCPv6

Copyright © 2003 Jun Li. All rights reserved.

IPv6 Security Issues

- Renumbering
 - How to enfoce a secure incremental v4->v6 transition?
- Hosts can generate its own temporary IP address
 - Making the traceback harder
- Anycast addresses
 - How to decide exactly which machine is the attacker
- Site-local and link-local addresses
 - Uncertain whether this is a good access control mechanism
- IPv6-capable firewall?
- What else?

NAT Security Issues

- Does not get along well with encryption
 - The port number is often encrypted as part of IP payload
 - IPsec is not compatible with NAT
 - IPsec protects checksum, which includes the IP address

Wireless Security

- Limited energy
 - Battery attack
- Easier eavesdropping
 - Cannot just lock your office door
- Harder border control
 - Can a wireless firewall be set up?
- Fragile routing infrastructure
 - Normal wireless nodes used as forwarding nodes
- Harder to trace back an attacker
 - Nodes are often mobile
- Security service is often not available
 - Hardly any on authentication, key management, etc.