
1
CIS 422/522

CIS 422/522 Fall 2002 1

CIS 422/522

Software Life cycles and Process models I

Stuart Faulk
Computer and Information Science

University of Oregon

CIS 422/522 Fall 2002 2

Definition

• Software Life Cycle: evolution of a software
development effort from concept to retirement

• Life Cycle Model: Abstract representation of a
software life cycle as a sequence of 1)
activities or phases and 2) products (usually
graphic)

• Software Process (process model):
institutionalized version of a life cycle model.
Usually intended to provide guidance to
developers.

2
CIS 422/522

CIS 422/522 Fall 2002 3

Why Have Process Models?

Concept ? Software
System

Why decompose this….

Into something like this….

Requirements

Design

Code

Concept Software
System

CIS 422/522 Fall 2002 4

Rationale for Process Models

• Developed as a tool for gaining and
maintaining control over complex software
development processes
– Difficult to “jump” from concept to product
– Need to break into steps and intermediate

products

Concept ? Software
System

When the system gets “large
enough” cannot just sit down and write it

3
CIS 422/522

CIS 422/522 Fall 2002 5

Rationale for Process Models (2)

• Application of “divide-and-conquer” to software
processes and products
– Goal: identify distinct and relatively independent

phases and products
– Can then address each separately
– Allows use of multiple people, concurrent

development
• Intended use

– Provide guidance to developers in what to produce
and when to produce it

– Provide a basis for planning and assessing
development progress

CIS 422/522 Fall 2002 6

A Simple Process Model

problem

Requirements

Requirements Engineering

Architectural Design

Architecture

Implementation

Modules

Testing

Working system

Detailed Design

Code

Product

Key

Phase

4
CIS 422/522

CIS 422/522 Fall 2002 7

Phases and Products

• Requirements
– Goal: implementation-independent specification of what the

software must do and any constraints on its development
– Product: Software Requirements Specification (SRS)

• Architecture
– Goal: decomposition of the problem into components that

together satisfy the requirements within the constraints
– Products: specifications of components, relations, interfaces

• Detail Design
– Goal: internal design of components (e.g., objects) to identify

appropriate algorithms and data structures supporting the
interface

– Products: design documentation, pseudo-code

CIS 422/522 Fall 2002 8

Phases and Products

• Implementation
– Goal: realization of the design in a machine-executable

language
– Product: code

• Testing
– Goal: validation and verification of the implementation

against requirements and design
– Products: test plan, test cases

• Maintenance
– Goal: maintain deployed system
– Products: bug fixes, patches, new versions

5
CIS 422/522

CIS 422/522 Fall 2002 9

A “Waterfall” Model

Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Architecture

Classic (and most common)
life cycle model view

Interpretation: Each phase is
completed before the next
is begun.

CIS 422/522 Fall 2002 10

Issues with Life Cycle Models

• Application of “divide-and-conquer” to software
processes and products
– Goal: identify distinct and relatively independent phases and

products
– Can then address each separately

• Intended use
– Provide guidance to developers in what to produce and

when to produce it
– Provide a basis for planning and assessing development

progress
• Caveat: Never an accurate representation of what

really goes on.

6
CIS 422/522

CIS 422/522 Fall 2002 11

A “Waterfall” Model

Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Architecture

What are the problems:
1. As a model of a real process?
2. As a guide to development?

CIS 422/522 Fall 2002 12

A “Waterfall” Model

Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Architecture

What are the problems?
1. Unrealistic as a model of any

real process
2. As a guide,

1. Poor fit for many kinds of
development efforts

2. Over constrains developers (e.g.
ordering need not be strict)

7
CIS 422/522

CIS 422/522 Fall 2002 13

Iterative “Waterfall” Model

Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Architecture

There have been many variations
attempting to fix the model without
Improving it much (more complex
but not much more useful)

CIS 422/522 Fall 2002 14

The Joys of Faking It

From: Parnas & Clements “A Rational Design
Process – How and Why to Fake-it”

8
CIS 422/522

CIS 422/522 Fall 2002 15

Design Processes are Idealizations

• Assertion: Design is an inherently “irrational”
process
– Completely rational processes proceed by a

sequence of optimal steps (the right choice each
time)

– Real processes rarely proceed rationally from goals
to products

• This is an essential characteristic of the design
process
– It’s a human process
– We’re neither omniscient nor omnipotent

CIS 422/522 Fall 2002 16

It Pays to “Fake it”

• Thesis: It is nonetheless useful to “fake” a rational
design process
– Model our ideal process
– Follow the ideal process as closely as possible
– Write the documentation and other work products as is we

had followed the ideal
– Key idea: when we finish, result looks like we followed an

ideal process
• Usefulness of idealized processes

– Idealized process can provide guidance to developers
– Helps come closer to the ideal (emulation)
– Helps standardize the process (provide a common view of

how to proceed and what to produce)
– Provides a yardstick for assessing progress (milestones)

9
CIS 422/522

CIS 422/522 Fall 2002 17

Contents of a Process Specification

• In general, contents should answer:
– What product we should work on next?

• Equivalently – what decision(s) must we make next?
– What kind of person should do the work?
– What information is needed to do the work?
– When is the work finished?
– What criteria must the work product satisfy?

• In personal terms, answers the questions:
– Is this my job?
– What do I do next?
– What do I need to do the work?
– Am I done yet?
– Did I do a good job?

CIS 422/522 Fall 2002 18

Common Process Models

Prototyping
Iterative

RAD or Xtreme
Spiral

10
CIS 422/522

CIS 422/522 Fall 2002 19

“Appropriate” Control

• Goal: Control development to meet requirements within budget
and schedule

• Choose processes to provide an appropriate level of control for
the given product and context
– Sufficient control to achieve results
– No more than necessary to contain cost and effort

• What constitutes “appropriate” control will be vastly different for
different types of developments
– Large vs. small
– New problems vs. old
– Time to market vs. quality
– These are neither independent nor exclusive

• Processes vary in their assumptions about these issues
– Useful to view in terms of which risk areas they address
– E.g., RAD vs. Spiral vs. Prototyping

CIS 422/522 Fall 2002 20

“Waterfall” Model Risks

Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Architecture

What are some potential areas of risk? e.g.,
a) When do I figure out I’m building the

system the customer actually wants?
b) What if my design approach doesn’t

work? etc

11
CIS 422/522

CIS 422/522 Fall 2002 21

I. Prototyping

• Traditionally used to address two distinct risk issues
– Requirements: problem that the user’s don’t know what they

want until they see it
– Technical feasibility: technical unknowns or technical risk in

development
• Two types of prototypes

– Demonstration: a concrete (visible) realization of some user
need. May or may not provide real functionality (e.g., a
mock-up of user interface)

• Answers the question: “Is this what we should build?”
– Engineering: a part of a working system sufficient to

demonstrate the feasibility of meeting some requirement
• Answers the question: “Can we build it using technology T?”

CIS 422/522 Fall 2002 22

Prototyping

• Prototyping should be a relatively cheap
process
– Use rapid prototyping languages and tools
– Not all functionality needs to be implemented
– Production quality is not required

Adapted from van Vliet © 2001 with permission

12
CIS 422/522

CIS 422/522 Fall 2002 23

Prototyping as a tool for
requirements understanding

reqs engineering

designdesign

implementationPrototyping

testingtesting

maintenance

Adapted from van Vliet © 2001 with permission

CIS 422/522 Fall 2002 24

Prototyping (2)

• Throwaway prototyping: the n-th prototype is
followed by a waterfall-like process (as depicted on
previous slide)

• Evolutionary prototyping: the nth prototype is
delivered
– This is almost always a bad idea! (Why is it difficult to

achieve good design this way – maintainable, etc?)
– However, it can be made even worse by doing it

unintentionally
– Incremental development has many of the same benefits

without the drawbacks
Adapted from van Vliet © 2001 with permission

13
CIS 422/522

CIS 422/522 Fall 2002 25

Prototyping Advantages

• The resulting system is easier to use
• User needs are better accommodated
• The resulting system has fewer features
• Problems are detected earlier
• The design is of higher quality
• The resulting system is easier to maintain
• The development incurs less effort

Adapted from van Vliet © 2001 with permission

CIS 422/522 Fall 2002 26

Prototyping Disadvantages

• The resulting system has more features
• The performance of the resulting system is

worse
• The design is of lower quality
• The resulting system is harder to maintain
• The prototyping approach requires more

experienced team members

Adapted from van Vliet © 2001 with permission

14
CIS 422/522

CIS 422/522 Fall 2002 27

Prototyping, recommendations

• The users and the designers must be well
aware of the issues and the pitfalls

• Use prototyping when the requirements are
unclear or there are major technical risk areas

• Prototyping needs to be planned and
controlled as well
– Explicit definition of system qualities
– Explicit control of how they will be achieved
– Prototype never defaults to the delivered system

Adapted from van Vliet © 2001 with permission

CIS 422/522 Fall 2002 28

II. Incremental Development

• A software system is delivered in small
increments of increasing capability
– Avoids the Big Bang effect (nothing works until

everything works)
– There’s always a working system
– Manages the risk that nothing will be working

at the deadline
• The steps of the waterfall model may be

employed in each phase (or variations)
• The customer is closely involved in directing

the next steps
Adapted from van Vliet © 2001 with permission

15
CIS 422/522

CIS 422/522 Fall 2002 29

Incremental Development

• Requires careful attention to architectural design (I.e.,
how the system is decomposed into components)
– Each increment must provide useful functionality
– Adding (or removing) functionality should not disrupt the

design
• Design implications

– The sequence of increments (useful subsets) must be
planned in advance

– Dependencies between components must be understood
and mapped out

• Avoid circular dependencies
• Make sure capabilities are present when needed for the next

increment

CIS 422/522 Fall 2002 30

III. RAD: Rapid Application Development

• Incremental development with time boxes: fixed time
frames within which activities are done
– Time frame is decided upon first, then one tries to realize as

much as possible within that time frame
• Close customer collaboration

– Joint Requirements Planning (JRD) and
– Joint Application Design (JAD),

• Requirements prioritization through a triage;
• Development in a SWAT team: Skilled Workers with

Advanced Tools
• “Xtreme Programming” is a variation on this theme

Adapted from van Vliet © 2001 with permission

16
CIS 422/522

CIS 422/522 Fall 2002 31

RAD: Rapid Application Development

• Must be able to sacrifice functionality for
schedule

• Requires, close, rapid communication cycles
between developers and with stakeholders

• Best suited for small team development and
modestly sized projects

CIS 422/522 Fall 2002 32

IV. Spiral Model

• All development models have something in
common: reducing the risks
– In prototyping, getting the right requirements is a

major risk
– In the waterfall model, the schedule is seen as a

risk
• The spiral model subsumes these different

models
– I.e., the model can be used to address any or all of

the risks by continually revisiting risk issues.

17
CIS 422/522

CIS 422/522 Fall 2002 33

Spiral Model

determine
goals

Risk evaluation
and Mitigation

plan next
phase

development

CIS 422/522 Fall 2002 34

Spiral Process Model (Boehm)

18
CIS 422/522

CIS 422/522 Fall 2002 35

Spiral Model Goals

• Response lack of risk analysis and risk
mitigation in “waterfall” process
– Make risk analysis standard part of process
– Address risk issues early and often

• Explicit risk analysis at each phase
• Framework for explicit risk-mitigation

strategies
– E.g., prototyping (what risk/difficulty is

addressed?)
• Explicit Go/No-Go decision points in process

CIS 422/522 Fall 2002 36

How do we Choose a Development
Process?

E.g., for your projects

19
CIS 422/522

CIS 422/522 Fall 2002 37

Project Relevance

• Need to agree on kind of control you need and how
you will accomplish it

• Must be clear on what the major risks are and how
you will manage them

• Process model (description) will then help keep
everyone on track
– Basis for planning and scheduling
– Each person knows what to do next
– Basis for tracking progress against schedule

• Should be one of the first things you decide but
expect it to evolve

CIS 422/522 Fall 2002 38

Project Processes

• What are the constraints?
– Which project attributes are outside of your control

(can’t be changed)?
– Which can be?

• What are the major risks?
• What are appropriate strategies to address

the risks?

20
CIS 422/522

CIS 422/522 Fall 2002 39

Summary

• Process models provide a tools for managing
and controlling software development
– Defines the sequence of activities, products,

preconditions, etc.
– Guides development activities and provides basis

for tracking progress
• Process models aren’t real processes

– Always an idealization of what really occurs
– Nonetheless, useful to fake it

• Choose process models for projects to control
the risks you face

