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Abstract. A significant problem with vision-based user interfaces is that they 
are typically developed and tuned for one specific configuration —one set of 
interactions at one location in the world and in image space. This paper 
describes methods and architecture for a vision system that supports dynamic 
reconfiguration of interfaces, changing the form and location of the interaction 
on the fly. We accomplish this by decoupling the functional definition of the 
interface from the specification of its location in the physical environment and 
in the camera image. Applications create a user interface by requesting a 
configuration of predefined widgets. The vision system assembles a tree of 
image processing components to fulfill the request, using, if necessary, shared 
computational resources. This interface can be moved to any planar surface in 
the camera’s field of view. We illustrate the power of such a reconfigurable 
vision-based interaction system in the context of a prototype application 
involving projected interactive displays. 

1 Introduction 

Vision-based user interfaces (VB-UI) are an emerging area of user interface 
technology where a user’s intentional gestures are detected via camera, interpreted 
and used to control an application. Although the recognition of human gesture and 
action has been the topic of many workshops and conferences [1-3], and the focus of 
much of our previous work [4, 5], the problem of design and implementation of these 
applications as well as the integration of computer vision has received, comparatively, 
less attention. Most real-life vision interface systems incorporate the vision system as 
a module that is hard-coded to operate under a fixed set of circumstances. In this 
paper we describe a system where the application sends the vision system a 
description of the user interface as a configuration of widgets (describing What the 
interface is). Based on this, the vision system assembles a set of image processing 
components that implement the interface, sharing computational resources when 
possible. To change the interaction, a new interface description can be sent to the 
system at any time. 

The architecture also provides for the deployment of an interface onto different 
real-world planar surfaces.  The parameters of the surfaces where the interface can be 
realized are defined and stored independently of any particular interface. These 
include the size, location and perspective distortion within the image and 



characteristics of the physical environment around that surface, such as the user’s 
likely position while interacting with it.  When the application requests a interface be 
activated on a particular surface (that is, Where the interaction should happen in the 
environment) the system propagates the surface parameters down the assembly of 
image processing components that implements that interface. 

By explicitly decoupling the information describing the characteristics of Where an 
interface happen in an environment, i.e., surface-specific information, we facilitate 
(1) the porting an application to a new environment where the interaction surfaces are 
different; (2) the use of one surface for multiple applications; and (3) the use of the 
same interface on multiple surfaces. 

These issues are very important in our current work that investigates steerable, 
projected interactive user interfaces, as described later in this paper (see also [6]). 
However, the framework presented in this paper should be seen as a way that vision-
based applications can easily adapt to different environments. Moreover, the proposed 
vision-system architecture is very appropriate for the increasingly common situations 
where the interface surface is not static (as, for instance in the cardboard interface 
described in [7]), when a pan/tilt camera is used to make an interface follow the user 
(as in [8]), or when the camera is attached to the user as in applications involving 
augmented reality or wearable computers(see [9]). 

The main contribution of this paper is the system architecture for the support of 
these dynamically reconfigurable vision-based user interfaces, both from the 
application point of view and in the inner workings of the vision system. 

2 Basic Elements of Dynamically Reconfigurable VB-UIs 

We start the discussion of our framework by describing three primitive concepts: 
configurations, widgets, and surfaces. 

2.1 Configurations and Widgets 

In our framework, a vision-based user interface is composed of a set of individual 
interaction dialogs referred to as configurations. Each configuration is a collection of 
interactive widgets, in a structure similar to how a traditional window-based 
application is defined as a set of dialog windows, each containing elements such as 
scroll bars, buttons and menus. In the case of a VB-UI, each widget provides an 
elemental user interaction, such as detecting a touch or tracking a fingertip. Widgets 
generate events back to the controlling application where they are mapped to control 
actions such as triggering an event or establishing the value of a parameter. Some of 
our earlier work describes the individual widget types we use and how they are 
implemented [10, 11]. Here we will focus on how they are dynamically combined to 
create a user interface. 

In addition to defining the widgets, a configuration specifies a boundary area that 
defines the configuration coordinate system. The boundary is used during the process 
of mapping a configuration onto a particular surface, as described later.  



2.2 Surfaces 

An application needs to be able to define the spatial layout of widgets with respect to 
each other and the world, as that is relevant to the user experience, but should not be 
concerned with details of the recognition process, such as exactly where these widgets 
lie within the video image. To provide this abstraction we use the concept of named 
interaction surfaces. A surface is essentially the camera’s view of a plane in 3D space. 

When a configuration is defined, its widgets are laid out using the coordinate 
system defined by the boundary area. A configuration is mapped to a surface by 
warping that coordinate system into the image with a perspective transformation 
(homography). When the configuration is activated, the region of the image 
corresponding to each widget is identified and examined for the appropriate activity, 
which in turn will trigger events to be returned to the application. Figure 1 shows a 
configuration with three buttons (blue squares) and a tracking area (green rectangle) 
being mapped onto different surfaces.  The process of determining the homography 
and establishing other local surface parameters is described in the next section. 

3 Architecture of a Dynamically Reconfigurable Vision System 

In order to efficiently support dynamic reconfiguration of vision-based interfaces, a 
flexible internal architecture is required in the vision system. In addition, the vision 
system must support operations that are not visible to the application, such as 
calibration, testing, and tuning. This section will describe this internal architecture. 

In our system, each widget is represented internally as a tree of components. Each 
component performs one step in the widget’s operation. For example the component 
tree of a “touch button” widget is circled in figure 2. There are components for 
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Fig. 1. Mapping a configuration onto two different surfaces. 



finding the moving pixels in an image (Motion Detection), finding and tracking 
fingertips in the motion data (Fingertip Tracking), looking for touch-like motions in 
the fingertip paths (Touch Motion Detection), generating the touch event for the 
application (Event Generation), storing the region of application space where this 
widget resides (Image Region Definition), and managing the transformation between 
application space and the image (Surface Transformation). 

Information is passed into the trunk of this tree and propagates from parent to 
child. During image processing, images are passed in. In this example, the Motion 
Detection component takes in a raw camera image and generates a motion mask 
image for its child components. Fingertip Tracking takes the motion mask and 
generates a path for the best fingertip hypothesis. Touch Motion Detection examines 
the fingertip path for a motion resembling a touch inside the image region of this 
button. When it detects such a motion, it triggers the Event Generation component.  A 
similar structure is used by the “tracking area” widget, also circled in figure 2.  
Because of the structured communication between components, they can easily be 
reused and rearranged to create new widget types with different behavior. 

3.1 Shared Components 

When an application activates a configuration of widgets, the vision system adds the 
components of each widget to the existing tree of active components. If high-level 
components are common between multiple widgets, they may either be shared or 
duplicated. For example, if there are multiple Touch Button components, they can 
share the motion Detection and Fingertip Tracking components, or each may have its 
own copy. The advantage of shared components is that expensive processing steps 

 
Fig. 2. Tree of components for two widgets. 



need not be repeated for each widget. Unfortunately this can sometimes lead to 
undesirable interactions between widgets, so the application has the option of 
specifying that these components be shared or not as needed. 

A good example of the trade-offs of shared components is when using touch-
sensitive buttons. If there are multiple buttons active at one time, these buttons 
generally share the Motion Detection component. When the Fingertip Tracking 
component is shared, however, the behavior of the widgets can change.  Recall that 
the Fingertip Tracker component tracks fingertip hypotheses within a region of the 
image. If this component is shared by more than one button, these widgets will both 
use the same fingertip hypothesis, meaning that only one of them can generate an 
event at a time. This may be desirable in some circumstances, say when implementing 
a grid of buttons, such as telephone keypad. In other circumstances, however, the 
application may not want activity in one button to prevent operation of another, so the 
widgets should each have their own fingertip tracker. 

3.2 Communication and Control 

When components are combined in a tree, widgets loose their individuality.  
However, it is still necessary to have a mechanism able to send information to and 
from widgets both individually and in groups (e.g. all widgets in a configuration). 
Information is propagated down the tree by Posting typed data to the root nodes. Data 
is retrieved from components in the tree by Querying for some data type. Both Post 
and Query use a fully qualified address including Configuration Name and Widget 
Name, either of which can be “all”.  As Post and Query data structures flow through a 
component, the address and data type of the structure are examined to determine if it 
should be handled or ignored by that component. 

For example, during operation, image data addressed to all widgets is posted to the 
root components of the tree.  As the data flows from parent to child, some 
components, such as the Motion Detector, may choose to modify the image before 
they post it to their children. Others, like the Fingertip Tracker, may create a new type 
of data (in this case a fingertip path) and post that to their children instead. 

3.3 Surface Calibration 

Applications identify surfaces by name, but each surface must be calibrated to 
determine where it lies in the video image.  A surface is calibrated by identifying the 
points in the image that correspond to the corners of a configuration’s boundary.  
These points can be located either manually or automatically, and then are saved with 
the surface.  When a configuration is mapped to a surface, the point pairs for each 
boundary corner are posted to the component tree.  Each widget has a Surface 
Transformation (ST) component that computes a homography from the four point-
pairs, and then uses it to convert the widget’s configuration coordinates into image 
coordinates.  The other components of the widget query the ST component to 
determine what image region to examine. 



3.4 Vision System Parameters 

In order to get the best performance from the vision system, a number of internal 
parameters can be adjusted. We keep these parameters hidden from the application so 
that the application need not be concerned with the specifics of visual recognition, 
and so the internal implementation of the widgets can change without requiring 
changes to the application.  

The system maintains a local record of all configurations and surfaces that have 
been defined, and parameters are maintained independently for each one.  The 
developer of an application can manually adjust (and test) the parameters from the 
vision system local GUI.  When a configuration is mapped to a surface and activated, 
the parameters of both the configuration and the surface are retrieved. 

Configurations maintain parameters for each widget component, allowing control 
of image-processing aspects such as sensitivity to motion.  This allows the application 
designer to adjust each configuration for different recognition characteristics.  For 
example, one configuration may need a higher recognition rate at the expense of a 
higher false positive rate, while in another a high false positive rate may not be 
acceptable.  Surfaces maintain parameters about the physical environment, such as 
where a user is typically located with respect to the surface during an interaction, 
which can be used by the widgets during processing 

4 An XML API for a Dynamically Reconfigurable VB-UI System 

To create a VB-UI an application must define the What, When and Where of each 
interaction. Defining What and When is similar to developing standard non VB-UI 
applications. One or more configurations must be defined, specifying the spatial 
layout of the widgets in each. The sequence of configurations (and of the non-UI 
aspects of the application) must be defined as a function of the events returned from 
the widgets and the application state. Unique to VB-UI interactions, the Where of 
each interaction must also be defined, meaning on which surface a configuration is to 
be displayed. 

To give the application the needed control we have defined an API based on a 
dialect of XML we call VIML (Vision Interface Markup Language).  VIML defines a 
set of visual interface objects and methods. Three basic objects are: VIsurface for 
defining attributes of a surface; VIconfiguration for defining widgets, their spatial 
relationships and elaborating their behavior; and VIevent for communicating events, 
such as a button press back to the application. In this paper we are concerned only 
with three methods for VIconfigurations and VIsurfaces: “Set”, used for setting 
values of objects; and “Activate/Deactivate” for activation. 

“Set” commands can be issued to adjust the external parameters of objects, e.g. the 
location and size of a button, the resolution of a tracking area, etc. Once an object has 
been configured with “Set”, it can be started and stopped as needed with “Activate” 
and “Deactivate” commands. Once activated, visual interface widgets begin to 
monitor the video stream and return relevant events to the application. 



The following XML string exemplifies a typical VIML-based command. It directs 
the VB-UI system to set the parameters of the VIconfiguration called “cfg” so that the 
boundaries of the internal coordinate frame are 500 units in x and y. It also sets the 
parameters of two widgets in the configuration, a button named “done”, which is 
located at x=200, y=200 and is 50 units large, and a track area which is 100 units in x 
and y and located at the origin (0,0) of the configuration coordinate frame. 

<set id="uniqueID1001"> 
 <VIconfiguration name="cfg" left="0" right="0" top="500" bottom="500"> 
   <VIbutton name="done" x="200" y="200" size="50" /> 
   <VItrackArea name="T1" left="0" right="0" top="50" bottom="50" /> 
 </VIconfiguration> 
</set> 

When a widget detects a user interaction, it returns a VIML event to the 
application. VIML events are XML valid strings that can be parsed by the application. 
These events are interpreted and handled by the application to control the flow of 
execution. The syntax of VIML events, as well as other objects and methods, is 
beyond the scope of this paper, and will be available soon in a publication format. 

5 Example Application: A Multi-Surface Projected Store Index 

One example of the experimental applications developed with this framework uses a 
device called an Everywhere Display projector (ED) to provide information access in 
retail spaces. This application provides a good example of how our dynamically 
reconfigurable vision system is used in practice. 

5.1 The Everywhere Display 

The ED is a device that combines steerable 
projector and camera, dynamic correction for 
oblique distortion, and a vision-based user interface 
system so it can direct a projected interactive 
interface onto virtually any planar surface. This 
allows visual information and interaction 
capabilities to be directed to a user when and where 
they are needed, without requiring the user to carry 
any device or for the physical environment to be 
wired. Figure 3 shows the current ED prototype 
(see [6] for details and other applications). 

The current ED software consists of a three-tier 
architecture composed of a Services Layer, an 
Integration Layer and an Application Layer. The 
Services Layer contains the modules that control 
the projector, the gesture recognition system (the 
subject of this paper), and other system functions.  

 
Fig. 3. The ED projector. 



Each of the modules in the Services layer exposes a set of core capabilities through a 
specialized dialect of XML, e.g. VIML for the vision component. An ED interaction 
is accomplished by orchestrating the modules in the Service layer through a sequence 
of XML commands. 

5.2 The Product Finder Application 

The goal of this application is to allow a customer to look up products in a store 
directory, and then guide her to where the product is. This Product Finder is accessed 
in two forms. At the entrance to the store there is a table dedicated to this purpose, 
much like the directory often found at the entrance to a mall. Here there is a physical 
slider bar the user manipulates to navigate the projected index (see figure 4.a). Note 
that the slider has no physical sensors; its motion is detected by the vision system. 
Elsewhere in the store the Product Finder can be accessed using wall signs that look 
like the table at the entrance, with a red stripe on the left instead of a moving slider 
but with no image projected on them (figure 4.b). When a sign is touched (figure 4.b), 
the projector image is steered towards it, the store index is projected, and product 
search is accomplished in much the same way as on the table, except that moving the 
physical slider is replaced by the user sliding her finger on the red stripe (figure 4.c). 

This application uses two vision interface configurations: a “call” configuration to 
request the Product Finder to be displayed on a particular surface; and a “selection” 
configuration to perform the product search. The “call” configuration consists of a 
touch button that covers the whole sign or table. The selection configuration consists 
of three widgets (figure 5). On the left of the configuration there are a widget 
designed to track the physical slider (red) and a widget designed to track the user’s 
fingertip (green). Only one of these will be active at a time. On the right is a touch 
button for the user to request directions to the selected item. The widgets are located 
with respect to the surface/configuration boundary area (the blue rectangle in 
figure 5). The corners of this area correspond to the corners of the wall signs. 

In the current system, a single pan/tilt camera monitors the call surfaces using the 
information from a person tracking system. It automatically aims the camera to the 
sign or table nearest to the user (the current prototype is setup for a single shopper at a 

     
Fig. 4. The Product Finder application mapped onto different surfaces. 
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time). Then, it activates the 
“call” configuration on that 
sign’s surface. In this way the 
system is always ready for the 
user to “call” the Product 
Finder. 

When the user touches a sign 
or table, the “call button” 
widget sends an event to the 
application, which then projects 
the “selection” graphics on the 
sign, while activating the 
corresponding configuration on 
the sign’s surface. If the 
Product Finder is being 
displayed on the table, the Physical Slider Tracker widget is activated and the 
Fingertip Tracker widget deactivated. On the wall signs, the reverse is true. 

At this point the Product Finder is ready for use. The tracking widget sends events 
back to the application whenever the shopper moves their finger on the red stripe (or 
moves the slider), and the application modifies the display showing the product she 
has selected. When the user touches the “request directions” button, the application 
projects arrows on hanging boards that guide the shopper through the store, while the 
camera/vision system returns to monitoring signs. 

This example demonstrates how the vision system can be easily switched between 
different configurations, how configurations are used on different surfaces, and how 
configurations are dynamically modified (by activating and deactivating widgets) to 
adapt to different contexts.  The vision system architecture makes adding additional 
wall signs as easy as hanging the sign and defining a new surface for it. 

6 Conclusion  

The system described in this paper provides an application the ability to dynamically 
reconfigure a vision system that implements user interfaces. Interaction widgets 
recognize atomic interaction gestures, widgets are combined into configurations to 
support more complex interactions, and configurations are sequenced to create 
complete applications. These vision-based interactions can be created on the fly by an 
application that has little or no knowledge of computer vision, and then placed onto 
any calibrated planar surface in the environment. 

The underlying architecture of the system, consisting of a dynamic tree of image 
processing components, combines flexibility, efficiency (through shared use of 
computational results), and easy code reuse and upgrading. Different applications and 
interactions can reuse the parameters of any given surface, which needs to be 
calibrated only once. Each widget can be tuned for best performance by parameters 
saved locally for each configuration and surface. The result is an “input device” that 

   
Fig. 5. Widgets mapped onto the surface of a wall sign. 
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can be dynamically configured by an application to support a wide range of novel 
interaction styles. 

Our work in using a XML protocol for describing dynamically reconfigurable VB-
UIs is part of a larger effort to develop similar protocols for the communication 
between an application and input/output service modules. So far we have also defined 
a protocol for controlling camera positions and movements (CAML) and another for 
the description and control of assemblies of projected images and video streams 
(PJML). In both cases a similar philosophy was applied, that is, decoupling of What, 
Where, and When; and run-time system structures that assemble input/output 
components on the fly. The system has been deployed in our laboratory and in two 
university laboratories where it is being used by graduate students and researchers. 
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