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Abstract

Human motion can be understood on several levels. The
most basic level is the notion that humans are collections
of things that have predictable visual appearance. Next
is the notion that humans exist in a physical universe, as
a consequence of this, a large part of human motion can
be modeled and predicted with the laws of physics. Fi-
nally there is the notion that humans utilize muscles to
actively shape purposeful motion. We employ a recursive
framework for real-time, 3-D tracking of human motion
that enables pixel-level, probabilistic processes to take ad-
vantage of the contextual knowledge encoded in the higher-
level models, including models of dynamic constraints on
human motion. We will show that models of purposeful ac-
tion arise naturally from this framework, and further, that
those models can be used to improve the perception of
human motion. Results are shown that demonstrate both
qualitative and quantitative gains in tracking performance.
Keywords|Human Motion Capture, Behaviour Interpre-
tation, Interactive Visual Interfaces, Physics-based Model-
ing of Human Motion

I. Introduction

This paper describes a real-time, fully-dynamic, 3-D per-
son tracking system that is able to tolerate full (temporary)
occlusions and whose performance is substantially unaf-
fected by the presence of multiple people. The system is
driven by 2-D blob features observed in two or more cam-
eras [1;2] and by behavior models that estimate control
signals. These features and controls are then probabilis-
tically integrated into a fully-dynamic 3-D skeletal model,
which in turn drives the 2-D feature tracking process by
setting appropriate prior probabilities. The intrinsic state
of the skeletal model is also used by the behavior module
to choose the appropriate control strategy.
The feedback between 3-D model and 2-D image fea-

tures is a recursive �lter, similar to an extended Kalman.
One unusual aspect of our approach is that the �lter di-
rectly couples raw pixel measurements with an articulated
dynamic model of the human skeleton. Previous attempts
at person tracking have utilized a generic set of image fea-
tures (e.g., edges, optical ow) that were computed as a
preprocessing step, without consideration of the task to be
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accomplished. In this aspect our system is similar to that
of Dickmanns in automobile control [3], and our previous
research shows that we obtain similar advantages in eÆ-
ciency and stability though this direct coupling.
We will show how this framework can go beyond passive

physics of the body by incorporating various patterns of
control (which we call `behaviors') that are learned from
observing humans while they perform various tasks. Be-
haviors are de�ned as those aspects of the motion that
cannot be explained by passive physics alone. In the un-
trained tracker these manifest as signi�cant structure in
the innovations process (the sequence of prediction errors).
Learned models of this structure can be used to recognize
and predict this purposeful aspect of human motion.
This paper will briey discuss the formulation of our 3-D

skeletal model in Section II.A, followed by an explanation
of how to drive that model from 2-D probabilistic mea-
surements, and how 2-D observations and feedback relate
to that model in Section II.B. Section II.C explains the be-
havior system and its intimate relationship with the phys-
ical model. Finally, we will report on experiments showing
an increase in 3-D tracking accuracy, insensitivity to tem-
porary occlusion, and the ability to handle multiple people
in Section IV.

A. Related Work

In recent years there has been much interest in tracking
the human body using 3-D models with kinematic and dy-
namic constraints. Perhaps the �rst e�orts at body track-
ing were by Badler and O'Rourke 1980, followed by Hogg
1988 [4;5]. These early e�orts used edge information to
drive a kinematic model of the human body. These sys-
tems require fairly precise hand initialization, and can not
handle the full range of common body motion.
Following this early work using kinematic models, some

researchers began using dynamic constraints to track the
human body. Pentland and Horowitz 1991 employed non-
rigid �nite element models driven by optical ow [6], and
Metaxas and Terzopolous's 1993 system employing deform-
able superquadrics [7;8] driven by 3-D point and 2-D edge
measurements. Again, these systems required precise ini-
tialization and could handle a limited range of body mo-
tion.
More recently, several authors have applied variations on

the basic kinematic analysis-synthesis approach method to
the body tracking problem [9;10;11]. Gavrila and Davis [12]
and Rehg and Kanade [13], have demonstrated that this
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approach has the potential to deal with limited occlusions,
and thus to handle a greater range of body motions.
The work described in this paper attempts to combine

the the dynamic modeling work with the advantages of
a recursive approach, by use of a formulation related to
the extended Kalman �lter that couples a fully dynamic
skeletal model with observations of raw pixel values, as
modeled by probabilistic `blob' models.
This system also attempts to incorporate learned pat-

terns of control into the body model. The approach we
take is based on the behavior modeling framework intro-
duced in Pentland and Liu 1995 [14]; it is also related to
the behavior modeling work of Blake 1996 [15] and Bregler
1997 [16]. However, the controller described here operates
on a 3-D non-linear model of human motion that is closer
to true body dynamics than 2-D linear models.

II. Mathematical Framework

The human body is a complex dynamic system, whose
visual features are time-varying, noisy signals. Accurately
tracking the state of such a system requires use of a recur-
sive estimation framework, as illustrated in �gure 1. The
elements of the framework are the observation model re-
lating noisy pixel-level features to the higher-level skele-
tal model and vice versa, the dynamic skeletal model, and
a model of typical behaviors. We will �rst describe the
dynamic and observation models, and then the behavior
model.

A. Dynamics

There are a wide variety of ways to model physical sys-
tems. The model needs to include parameters that describe
the links that compose the system, as well as information
about the hard constraints that connect these links to one
another. A model that only includes this information is
called a kinematic model, and can only describe the static
states of a system. The state vector of a kinematic model
consists of the model state, q, and the model parameters,
p.
A system in motion is more completely modeled when

the dynamics of the system are modeled as well. A dynamic
model describes the state evolution of the system over time.
In a dynamic model the state vector includes velocity as
well as position: q; _q;p). And state evolves according to
Newton's First Law:

�q =W �Q (1)

Where Q is the vector of external forces applied to the
system, and W is the inverse of the system mass matrix.
The mass matrix describes the distribution of mass in the
system.

A. Hard Constraints

Hard constraints represent absolute limitations imposed on
the system. One example of a kinematic constraint is a
skeletal joint. Our model follows the virtual work formula-
tion [17]. In a virtual work formulation, all the links in a

model have full range of unconstrained motion. Hard kine-
matic constraints on the system are enforced by a special
set of forces c:

�q =W � (Q+ c(q; t)) (2)

The formulas governing these constraints can be modi�ed
at run-time.
It is essential that the constraint forces do not add energy

to the system. It can be shown that this requirement is
satis�ed if they are constructed so they lie in the null space
complement of the constraint Jacobian:

c(q; t) = �
@ _c

@q
(3)

Combining that equation with the de�nition of the con-
straints results in a linear system of equations with only
the one unknown, �:
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This equation can be rewritten to emphasize its linear na-
ture. J is the constraint Jacobian, � is a known constant
vector, and � is the vector of unknown Lagrange multipli-
ers:

�JTWJ� = � (5)

Many fast, stable methods exist for solving equations of
this form.

B. Soft Constraints

Some constraints are probabilistic in nature. Noisy image
measurements are a constraint of this sort, they inuence
the dynamic model but do not impose hard constraints on
its behavior.
Soft constraints such as these can be expressed as a po-

tential �eld acting on the dynamic system. The incorpora-
tion of a potential �eld function that models a probability
density pushes the dynamic evolution of the model toward
the most likely value, starting from the current model state.
Note that functions that take the model state as input,

such as a the controller from Section II.C, can be repre-
sented as a time-varying potential �eld. One relevant ex-
ample is incorporation of a probability distribution over
link position and velocity:

Qf = f(X;q; _q) (6)

B. The Observation Model

The low-level features extracted from video comprise the
�nal element of our system. Our system tracks regions that
are visually similar, and spatially coherent: blobs. We can
represent these 2-D regions by their low-order statistics.
Clusters of 2-D points have 2-D spatial means and covari-
ance matrices, which we shall denote � and �. The blob
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Fig. 1. The ow of information though the system. Predictive feedback from the 3-D dynamic model becomes prior knowledge for the 2-D observations
process. Predicted control allows for more sensible predictive feedback.

Fig. 2. Left: video and 2-D blobs from one camera in the stereo pair. Right: corresponding con�gurations of the dynamic model.

spatial statistics are described in terms of their second-
order properties; for computational convenience we will in-
terpret this as a Gaussian model:

Pr(Oj�k;�k) =
exp(� 1

2 (O� �k)
T��1

k (O� �k))

(2�)
m

2 j�kj
1

2

(7)

The Gaussian interpretation is not terribly signi�cant, be-
cause we also keep a pixel-by-pixel support map showing
the actual occupancy [18].
These 2-D features are the input to the 3-D blob estima-

tion equation used by Azarbayejani and Pentland [1]. This
observation equation relates the 2-D distribution of pixel
values to a tracked object's 3-D position and orientation.
These observations supply constraints on the underlying

3-D human model. Due to their statistical nature, observa-
tions are easily modeled as soft constraints. Observations
are integrated into the dynamic evolution of the system by
modeling them as descriptions of potential �elds, as dis-
cussed in Section II.A.2.

A. The Inverse Observation Model

In the open-loop system, the vision system uses a Maxi-
mum Likelihood (ML) framework to label individual pixels
in the scene:

�ij = argmax
k

[Pr(Oij j�k;�k)] (8)

where �ij is the labeling of pixel (i; j), and (�k;�k) are
the second-order statistics of model k.
To close the loop, we need to incorporate information

from the 3-D model. Given the current state of the model
q, it is possible to compute the state of an individual link
that matches a speci�c tracked feature (say the hand), and
call it v. Then, given a model of the camera, it is possible
to calculate the perspective projection of that state into
2-D and call it v�.
Since the vision system uses a stochastic framework, it

is necessary to represent this link projection as a statistical
model: Pr(Oij jv

�

k). Integrating this information into the
2-D statistical decision framework results in a Maximum A

Posteriori decision rule:

�ij = argmax
k

[Pr(Oij j�k;�k) � Pr(Oij jv
�

k)] (9)

C. Models of Purposeful Motion

Observations of the human body reveal an interplay be-
tween the passive evolution of a physical system (the hu-
man body) and the inuences of a an active, complex con-
troller (the nervous system). Section II.A explains how,
with a bit of work, it is possible to model the physical
aspects of the system. However, it is very diÆcult to ex-
plicitly model the human nervous system, so the approach
of using observed data to estimate probability distributions
over control space is very appealing.
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Fig. 3. Modeling tracking data of circular hand motion. Passive physics alone leaves signi�cant structure in the innovations process. Top Left:
Smoothing the innovations reveals unexplained structure. Top Right: Plotting the Innovations along the path makes the purposeful aspect of the
action clear. Bottom: In this example, using a learned control model to improve predictions leaves only white process noise in the innovations
process. The smoothed innovations stay near zero.

A. A Model for Control

Kalman �ltering includes the concept of an innovations

process. This is the di�erence between the actual obser-
vation and the predicted observation transformed by the
Kalman gain:

�t =Kt(yt �Ht�tx̂t�1) (10)

The innovations process � is the sequence of information
in the observations that was not adequately predicted by
the model. According to control theory, if we have a suf-
�cient model of the dynamic process and the observation
model, and white, zero-mean Gaussian noise is added to the
system, both in the observation stream and into the real
dynamic system itself, then the innovations process will be
zero-mean and white. Inadequate models will manifest as
correlations in the innovations process.
As described above, we have signi�cant models of the

observed human in terms of appearance, perspective, and
passive physics. The most signi�cant unmodeled aspect of
human motion is active control. Purposeful human motion
includes signi�cant structure due to the active control of
nerves and muscles that is not well modeled by the passive
physics, perspective or appearance modules. We should
expect this signi�cant, unmodeled structure to color the
innovations process.
A simple example is helpful for illustrating this idea. If

we track the hand moving in a circular motion, then we
have a sequence of observations of hand position. This
sequence is the result of a physical thing being measured
by a noisy observation process. Assuming that the hand
moves according to a linear, constant dynamic model, it is
possible to estimate the true state of the hand, and predict
future states and observations. If this model is suÆcient,

then the errors in the predictions should be solely due to
the noise in the system.
The upper plots in Figure 3 show that model is not suÆ-

cient. Smoothing � reveals signi�cant structure (top left).
Plotting the innovations along the path of observations
make the relationship between the observations and the
innovations clear: there is some unmodeled process acting
to keep the hand moving in a circular motion (top right).
The only signi�cant unmodeled process is the purposeful
control signal that being applied to the hand by the mus-
cles.
In this example, there is one active, cyclo-stationary con-

trol behavior, and it's relationship to the state of the phys-
ical system is straightforward. There is a one-to-one map-
ping between the state and the phase o�set into the cyclic
control, and a one-to-one mapping between the o�set and
the control to be applied. If we use the smoothed innova-
tions as our model and assume a linear control model of
identity, then the linear prediction becomes:

x̂t = �tx̂t�1 + Iut�1 (11)

where ut�1 is the control signal applied to the system. The
lower plots in Figure 3 show the result of modeling the hand
motion with a model of passive physics and a model of
the active control. The smoothed innovations are basically
zero: there is no part of the signal that deviates from our
model except for the observation noise.
In this simple, linear example the system state, and thus

the innovations, are represented the same coordinate sys-
tem as the observations. With more complex dynamic and
observations models, such as described in Section II.A, they
could be represented in any arbitrary system, including
spaces related to observation space in non-linear ways, for
example as joint angles or other appropriate models.
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The next section examines a more powerful form of model
for control.

B. Multiple Behavior Models

Human behavior, in all but the simplest tasks, is not as
simple as a single control model. The next most com-
plex model of human behavior is to have several alternative
models of control, one for each class of response. Since the
innovations process is the part of the observation data that
is unexplained by the dynamic model, the behavior model
that explains the largest portion of the observations is, of
course, the model most likely to be correct. This is known
as the multiple model or generalized likelihood approach,
and produces a generalized maximum likelihood estimate
of the current and future values of the state variables [19].
At each time step, we calculate the probability Pr(i) of

the m-dimensional innovations � given the ith model and
choose the model with the largest probability. The chosen
model is then used in Equation 11 to estimate the current
value of the state variables, to predict their future values,
and to choose among alternative responses. The cost of
these calculations is suÆciently small to make the approach
quite practical for small control vocabularies.
Intuitively, this solution breaks the person's overall be-

havior down into several \prototypical" behaviors. We
then classify the behavior by determining which model best
�ts the observations. This idea is similar to the multiple
model approach of Friedmann 1993, and Isard 1996[20;15].

C. Hidden Markov Models of Control

Since human motion evolves over time, in a complex way,
it is advantageous to explicitly model temporal dependence
and internal states in the control process. A Hidden Markov
Model (HMM) is one way to do this, and has been shown
to perform quite well recognizing human motion[21].
The probability that the model is in a certain state, Sj

given a sequence of observations, O1;O2; : : : ;ON , is de-
�ned recursively. For two observations, the density is:

Pr(O1;O2;q2 = Sj) =

"
NX
i=1

�ibi(O1)aij

#
bj(O2) (12)

Where �i is the prior probability of being in a state i, and
bi(O) is the probability of making the observation O while
in state i. This is the Forward algorithm for HMM models.
Estimation of the control signal proceeds by identifying

the most likely state given the current observation and the
last state, and then using the observation density of that
state as described above. We restrict the observation den-
sities to be either a Gaussian or a mixture of Gaussians.
There are well understood techniques for estimating the
parameters of the HMM from data.

III. Implementation Details

The dynamic skeleton model currently includes the up-
per body and arms. The body element is rooted at the
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Fig. 4. Sum Square Error of a Physics-only tracker (triangles) vs. error
from a Physics+Behavior Tracker

bottom to the world with a ball joint. The arms are com-
posed of two elements each connected at the shoulder with
a ball joint. The arm element are joined together with a
ball joint at the elbow. All joints are also spanned by servos
that apply damping torques to the joint. The ball joints
are implemented as described in Section II.A.1.
The top of the body element and the ends of the lower

arm elements are connected to the perceptual input with
soft constraints as described in Section II.A.2. The soft
constraints are implemented as bounded proportional-de-
rivative servos. The servos connecting the hands to the
hand observations have a sti�ness of 50N

m
and a damping

coeÆcient of 100Ns
m

with a bound of 100N . The servo
connecting the head to the head observation has a sti�-
ness of 250N

m
and a damping coeÆcient of 200Ns

m
with a

bound of 100N . If a blob is undetected in the current
frame, the force bound is set to 0N for that body part un-
til the next observation, and the model propagates forward
in time without any inuence from that observation.
The model performs integration steps at 500Hz. The

observations are updated at video frame rate: 30Hz. Pre-
dictions are sent to the 2-D vision module at 120Hz to
insure that timely prediction information is available at
the start of each processing phase.

IV. Results

Figure 2 shows the real-time response of the model to
a set of 2-D observations. The corresponding observations
from the stereo pair are not shown. The model interpolates
those portions of the body State that are not measured
directly, such as the upper body and elbow orientation,
by use of the model's intrinsic dynamics and the behavior
(control) model. The model also rejects noise that is incon-
sistent with the dynamic model. Table 4 compares noise in
the physics+behavior tracker with the physics-only tracker
noise. It can be seen that there is a signi�cant increase in
performance.
Figure 5 illustrates another advantage of feedback from

higher-level models to the low-level vision system. The
solid plots show Y and Z coordinates of left and right hand
tracks over time. The dotted plots are projections onto
the Y = 0 and Z = 5 planes to aid readers in interpreting
the 3-D structure of the data. The image in the upper left
shows a diagram of the motion in relation to the coordinate
system. The image sequence is taken from the input video.
The results were recorded from the system during real-time
operation.
The left plot shows that that without feedback, the 2-D
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Fig. 5. Tracking performance on a sequence with signi�cant occlusion. Top: A diagram of the sequence and a single camera's view of the motion.
Left: A graph of tracking results without feedback. Right: Correct tracking when feedback is enabled.

tracker fails if there is even partial self-occlusion, or occlu-
sion of an object with similar appearance (such as another
person), from a single camera's perspective. These failures
propagate through the system and result in these erroneous
3-D tracking results. These failures manifest in Figure 5 as
discontinuities in the left plot. With feedback, information
from the dynamic model and the perspective constraints
can be used to resolve ambiguity during 2-D tracking. The
improved results are shown in the right plot. With models
of behavior, the systems should be able to tolerate longer
occlusions.

V. Conclusion

We have presented a framework for human motion un-
derstanding, de�ned as estimation of the physical state of
the body combined with interpretation of that part of the
motion that cannot be predicted by passive physics alone.
The behavior system operates in conjunction with a real-
time, fully-dynamic, 3-D person tracking system that pro-
vides a mathematically concise formulation for incorporat-
ing a wide variety of physical constraints and probabilistic
inuences. The framework takes the form of a non-linear
recursive �lter that enables even pixel-level processes to
take advantage of the contextual knowledge encoded in the
higher-level models. Some of the demonstrated bene�ts of
this approach include: increase in 3-D tracking accuracy,
insensitivity to temporary occlusion, and the ability to han-
dle multiple people.
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