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Abstract

This paper describes experiments in human motion
understanding, de�ned here as estimation of the phys-
ical state of the body (the Plant) combined with inter-
pretation of that part of the motion that cannot be pre-
dicted by the plant alone (the Behavior). The described
behavior system operates in conjunction with a real-
time, fully-dynamic, 3-D person tracking system that
provides a mathematically concise formulation for in-
corporating a wide variety of physical constraints and
probabilistic inuences. The framework takes the form
of a non-linear recursive �lter that enables pixel-level,
probabilistic processes to take advantage of the contex-
tual knowledge encoded in the higher-level models. Re-
sults are shown that demonstrate both qualitative and
quantitative gains in tracking performance.

1 Introduction

This paper describes a real-time, fully-dynamic, 3-D
person tracking system that is able to tolerate full
(temporary) occlusions and whose performance is sub-
stantially una�ected by the presence of multiple peo-
ple. The system is driven by 2-D blob features ob-
served in two or more cameras [1, 19] and by behavior
models that estimate control signals. These features
and controls are then probabilistically integrated into a
fully-dynamic 3-D skeletal model, which in turn drives
the 2-D feature tracking process by setting appropriate
prior probabilities. The intrinsic state of the skeletal
model is also used by the behavior module to choose
the appropriate control strategy.

The feedback between 3-D model and 2-D image fea-
tures is an extended Kalman �lter. One unusual as-
pect of our approach is that the �lter directly couples
raw pixel measurements with an articulated dynamic
model of the human skeleton. Previous attempts at
person tracking have utilized a generic set of image fea-
tures (e.g., edges, optical ow) that were computed as
a preprocessing step, without consideration of the task
to be accomplished. In this aspect our system is simi-
lar to that of Dickmanns in automobile control [4], and
we believe that we can obtain similar advantages in ef-
�ciency and stability though this direct coupling. A

second unusual aspect is that the Kalman �lter goes
beyond passive physics of the body by incorporating
various patterns of control (which we call `behaviors')
that are learned from observing humans while they per-
form various tasks.
This paper will illustrate the structure of the behav-

ior system with some simple examples in Section 3.
We will then briey discuss the formulation of our 3-D
skeletal model in Section 4, followed by an explaination
of how to drive that model from 2-D probabilistic mea-
surements, how to 2-D observations and feedback relate
to that model in Section 5. Finally, we will report on ex-
periments showing an increase in 3-D tracking accuracy,
insensitivity to temporary occlusion, and the ability to
handle multiple people in Section 7.

1.1 Related Work

In recent years there has been much interest in track-
ing the human body using 3-D models with kinematic
and dynamic constraints. Perhaps the �rst e�orts at
body tracking were by Badler and O'Rourke 1980, fol-
lowed by Hogg 1988 [11, 10]. These early e�orts used
edge information to drive a kinematic model of the hu-
man body. These systems require fairly precise hand
initialization, and can not handle the full range of com-
mon body motion.
Following this early work using kinematic models,

some researchers began using dynamic constraints to
track the human body. Pentland and Horowitz 1991
employed non-rigid �nite element models driven by op-
tical ow [12], and Metaxas and Terzopolous's 1993 sys-
tem employing deformable superquadrics [8, 9] driven
by 3-D point and 2-D edge measurements. Again, these
systems required precise initialization and could handle
a limited range of body motion.
More recently, several authors have applied vari-

ations on the basic kinematic analysis-synthesis ap-
proach method to the body tracking problem [15, 2, 6].
Gavrila and Davis [5] and Rehg and Kanade [14], have
demonstrated that this approach has the potential to
deal with limited occlusions, and thus to handle a
greater range of body motions.
The work described in this paper attempts to com-

bine the the dynamic modeling work with the advan-
tages of a recursive approach, by use of an extended

1



Dynamics

Behavior

2-D Vision 2-D Vision
Predictions

3-D Estimates

Observation Model

Figure 1. The ow of information though the

system. Predictive feedback from the 3-D dy-

namic model becomes prior knowledge for the

2-D observations process.

Kalman �lter formulation that couples a fully dynamic
skeletal model with observations of raw pixel values, as
modeled by probabilistic `blob' models.
This system also attempts to explicitly incorporate

learned patterns of control into the body model. The
approach we take is based on the behavior modeling
framework introduced in Pentland and Liu 1995 [13]; it
is also related to the behavior modeling work of Blake
1996 [7] and Bregler 1997 [3]. However, this controller
operates on a 3-D non-linear model of human motion
that is closer to true body dynamics than 2-D linear
models.

2 Mathematical Framework

The human body is a complex dynamic system,
whose visual features are time-varying, noisy signals.
Accurately tracking the state of such a system requires
use of a recursive estimation framework, as illustrated
in �gure 1. The elements of the framework are the
observation model relating noisy pixel-level features to
the higher-level skeletal model and vice versa, the dy-
namic skeletal model, and a model of typical behaviors.
We will �rst describe the behavior model, and then the
dynamic and observation models.

3 The Idea

Observations of the human body reveal an interplay
between the passive evolution of a physical system (the
human body) and the inuences of a an active, complex
controller (the nervous system). Section 4 explains how,
with a bit of work, it is possible to model the physical
aspects of the system. It is very di�cult to explicitly
model the human nervous system, however, so the ap-
proach of using observed data to estimate probability
distributions over control space is very appealing.

3.1 A Model for Control

By collecting data from real human motion our sys-
tem models behavior patterns as statistical densities
over con�guration space. Di�erent con�gurations have
di�erent observation probabilities.

One very simple behavior model is the mixture
model, in which distribution is modeled as a collection
of Gaussians. In this case the composite density is de-
scribed by:

NX
k=1

Pk � Pr(Oj� = k) (1)

where Pk is the observed prior probability of sub-model
k.
The mixture model represents a clustering of data

into regions within the observation space. Since hu-
man motion evolves over time, in a complex way, it is
advantageous to explicitly model temporal dependence
and internal states. A Hidden Markov Model (HMM)
is one way to do this, and has been shown to perform
quite well recognizing human motion[16].
The probability that the model is in a certain state,

Sj given a sequence of observations, O1;O2; : : : ;ON , is
de�ned recursively. For two observations, the density
is:

Pr(O1;O2;q2 = Sj) =

"
NX
i=1

�ibi(O1)aij

#
bj(O2) (2)

Where �i is the prior probability of being in a state i,
and bi(O) is the probability of making the observation
O while in state i. This is the Forward algorithm for
HMM models.
Estimation proceeds by identifying the most likely

state given the current observation and the last state,
and then using the observation density of that state
as described above. We restrict the observation densi-
ties to be either a Gaussian or a mixture of Gaussians.
There are well understood techniques for estimating the
parameters of the HMM from data.

3.2 A Simple Example

A simple example is helpful for illustrating the idea
expressed in Section 3.1. This section explores the
application of hybrid models to the domain of simple
mouse gestures. Hundreds of examples of circles, trian-
gles, and scribbles were collected. This data was then
used to train two classes of HMMs. The HMMs were
all initialized to have �ve states with the possibility of
skipping up to two states per transition.
One class of HMMs, the Delta models, were trained

on the di�erences between the last mouse state and the
current state. This is a well known technique when
using HMMs to recognize human gesture [16].
The other class of HMMs, the Innovation mod-

els, were trained on the innovations sequence from a
Kalman �lter. The innovation is the error between an
observation and the prediction of that observation by
the linear model inside the �lter. That is, these HMMs
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model circle triangle scribble
Deltas 100% 100% 100%
Innovations 100% 100% 100%

Table 1. Recognition rates for the two behavior

models. Both models are powerful classi�ers.

For comparison, models trained on absolute po-

sition perform at chance.
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Figure 2. Examples of synthesized gestures.

Top: Delta models. Bottom: Innovation mod-

els. Noise makes the Delta models unsuitable

for prediction.

were trained on the part of the motion that was not
solely due to the evolution of a dynamic model.

Table 1 shows that from a classi�cation point of view,
with 100% recognition rates, both classes of model are
describing the data very well. However, it is necessary
that the models not only classify the actions of the user,
but also allow prediction.

Figure 2 demonstrates the di�erence in the predictive
power of two types of model. Locally, where we would
expect predictive power to be the strongest, the Delta
models provide very noisy output. By contrast the In-
novation models produce more reasonable output. The
key di�erence is the lack, in the Delta models, of an
explicit representation of the inherent dynamics of the
data.

Since the Innovation models have an explicit model
of the system dynamics, the HMM parameters can be
used to model the innovation, that aspect of the signal
that cannot be predicted by the dynamic model. We
call patterns in the innovations the \e�ects of control"
or \behaviors".

The next section examines a more powerful form of
dynamic model.

4 Dynamics

There are a wide variety of ways to model physical
systems. The model needs to include parameters that
describe the links that compose the system, as well as
information about the hard constraints that connect
these links to one another. A model that only includes
this information is called a kinematic model, and can
only describe the static states of a system. The state
vector of a kinematic model consists of the model state,
q, and the model parameters, p.
A system in motion is more completely modeled when

the dynamics of the system are modeled as well. A dy-
namic model describes the state evolution of the system
over time. In a dynamic model the state vector includes
velocity as well as position: q; _q;p). And state evolves
according to Newton's First Law:

�q =W �Q (3)

Where Q is the vector of external forces applied to the
system, andW is the inverse of the system mass matrix.
The mass matrix describes the distribution of mass in
the system.

4.1 Hard Constraints

Hard constraints represent absolute limitations im-
posed on the system. One example of a kinematic con-
straint is a skeletal joint. Our model follows the virtual
work formulation [18]. In a virtual work formulation,
all the links in a model have full range of unconstrained
motion. Hard kinematic constraints on the system are
enforced by a special set of forces c:

�q =W � (Q+ c(q; t)) (4)

The formulas governing these constraints can be modi-
�ed at run-time.
It is essential that the constraint forces do not add

energy to the system. It can be shown that this require-
ment is satis�ed if they are constructed so they lie in
the null space complement of the constraint Jacobian:

c(q; t) = �
@ _c

@q
(5)

Combining that equation with the de�nition of the con-
straints results in a linear system of equations with only
the one unknown, �:

�

"
@c

@q

T

W
@c

@q

#
� =

@c

@q

T

WQ+
@ _c

@q
_q +

@2c

@t2
(6)

This equation can be rewritten to emphasize its linear
nature. J is the constraint Jacobian,K is a known con-
stant vector, and � is the vector of unknown Lagrange
multipliers:

� JTWJ� = K (7)
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Many fast, stable methods exist for solving equations
of this form.

4.2 Soft Constraints

Some constraints are probabilistic in nature. Noisy
image measurements are a constraint of this sort, they
inuence the dynamic model but do not impose hard
constraints on its behavior.

Soft constraints such as these can be expressed as
a potential �eld acting on the dynamic system. The
incorporation of a potential �eld function that models
a probability density pushes the dynamic evolution of
the model toward the most likely value, starting from
the current model state.

Note that functions that take the model state as in-
put, such as a the controller from Section 3, can be rep-
resented as a time-varying potential �eld. One relevant
example is incorporation of a probability distribution
over link position and velocity:

Qf = f(X;q; _q) (8)

5 The Observation Model

The low-level features extracted from video comprise
the �nal element of our system. Our system tracks re-
gions that are visually similar, and spatially coherent:
blobs. We can represent these 2-D regions by their low-
order statistics. Clusters of 2-D points have 2-D spa-
tial means and covariance matrices, which we shall de-
note � and K. The blob spatial statistics are described
in terms of their second-order properties; for computa-
tional convenience we will interpret this as a Gaussian
model:

Pr(Oj�k;Kk) =
exp(�1

2(O� �k)
TK�1

k (O� �k))

(2�)
m

2 jKkj
1

2

(9)
The Gaussian interpretation is not terribly signi�cant,
because we also keep a pixel-by-pixel support map

showing the actual occupancy [19].

These 2-D features are the input to the 3-D blob es-
timation equation used by Azarbayejani and Pentland
[1]. This observation equation relates the 2-D distribu-
tion of pixel values to a tracked object's 3-D position
and orientation.

These observations supply constraints on the under-
lying 3-D humanmodel. Due to their statistical nature,
observations are easily modeled as soft constraints. Ob-
servations are integrated into the dynamic evolution of
the system by modeling them as descriptions of poten-
tial �elds, as discussed in Section 4.2.

5.1 The Inverse Observation Model

In the open-loop system, the vision system uses a
MaximumLikelihood (ML) framework to label individ-
ual pixels in the scene:

�ij = argmax
k

[Pr(Oijj�k;Kk)] (10)

where �ij is the labeling of pixel (i; j), and (�k;Kk)
are the second-order statistics of model k.
To close the loop, we need to incorporate informa-

tion from the 3-D model. Given the current state of
the model q, it is possible to compute the state of an
individual link that matches a speci�c tracked feature
(say the hand), and call it v. Then, given a model of
the camera, it is possible to calculate the perspective
projection of that state into 2-D and call it v�.
Since the vision system uses a stochastic framework,

it is necessary to represent this link projection as a sta-
tistical model: Pr(Oijjv

�

k). Integrating this informa-
tion into the 2-D statistical decision framework results
in a Maximum A Posteriori decision rule:

�ij = argmax
k

[Pr(Oijj�k;Kk) � Pr(Oijjv
�

k)] (11)

6 Multiple Behavior Models

Human behavior, in all but the simplest tasks, is not
as simple as a single dynamic model. The next most
complex model of human behavior is to have several al-
ternative models of the person's dynamics, one for each
class of response. Then at each instant we can make
observations of the person's state, decide which model
applies, and then use that model for estimation. This
is known as the multiple model or generalized likelihood
approach, and produces a generalized maximum likeli-
hood estimate of the current and future values of the
state variables [17]. Moreover, the cost of the Kalman
�lter calculations is su�ciently small to make the ap-
proach quite practical.
Intuitively, this solution breaks the person's overall

behavior down into several \prototypical" behaviors.
For instance, we might have dynamic models corre-
sponding to a relaxed state, a very \tight" state, and
so forth. We then classify the behavior by determining
which model best �ts the observations.
Mathematically, this is accomplished by evaluating a

dynamic model in the form of a Kalman �lter:

X̂k = Xk +Kk(Yk � h(X�

k; t)) (12)

The measurement innovations process for the model
(and associated Kalman �lter) is then

�k = Yk � h(X�

k; t) (13)
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Figure 3. Left: video and 2-D blobs from one

camera in the stereo pair. Right: correspond-

ing con�gurations of the dynamic model.

The measurement innovations process is zero-mean
with covariance R.

Since the innovations process is the part of the obser-
vation data that is unexplained by the dynamic model,
the behavior model that explains the largest portion of
the observations is, of course, the model most likely to
be correct. Thus, at each time step, we calculate the
probability Pr(i) of the m-dimensional observations Yk

given the ith model using Equation 2 and choose the
model with the largest probability. This model is then
used to estimate the current value of the state variables,
to predict their future values, and to choose among al-
ternative responses.

Note that when optimizing predictions of measure-
ments �t in the future, Equation 13 must be modi�ed
slightly to test the predictive accuracy of state estimates
from �t in the past.

7 Results

The dynamic skeleton model currently includes the
upper body and arms. Figure 3 shows the real-time
response to various target postures. The model inter-
polates those portions of the body state that are not
measured directly, such as the upper body and elbow
orientation, by use of the model's intrinsic dynamics
and the behavior (control) model. The model also re-
jects noise that is inconsistent with the dynamic model.
Table 2 compares RMS noise in the dynamic model out-
put with noise in the underlying feature tracker. The
\line following" test measures error from the best-�t
line to data produced by constraining the users hand
to move along a linear trajectory. The \rotational jit-
ter" measures error to a smoothed version of data ob-
tained by smooth motions of the user's hand through a
rotation.

It can be seen that Figure 4 illustrates another ad-
vantage of feedback from higher-level models to the low-
level vision system. Without feedback, the 2-D tracker
fails if there is even partial self-occlusion from a single
camera's perspective. With feedback, information from
the dynamic model can be used to resolve ambiguity

experiment tracker dynamic model
line following 1.4 cm 0.9 cm
rotational jitter 2.2 deg 0.6 deg

Table 2. Comparison of RMS tracking error for

tracking with and without feedback.

Figure 5. Users sharing the workspace. Phys-

ical constraints stabilize the 2-D tracker with

respect to competing targets.

during 2-D tracking.

The model predictions also stabilize tracking by pro-
viding constraints that help the tracking algorithm re-
ject distractions in the environment. The addition of
another person to the scene, as in Figure 5, produces
many patches in the image that are similar to the tar-
get blobs. Without high-level model knowledge, the
2-D tracker can only reject these distractions based on
some assumptions about the temporal stability of blobs.
With the addition of high-level feedback, however, the
2-D tracker now has information about the physical
constraints of the underlying system. Consequently, it
is generally not distracted by competing targets (such
as other people).

8 Conclusion

We have presented a framework for human motion
understanding, de�ned as estimation of the physical
state of the body combined with interpretation of that
part of the motion that cannot be predicted by pas-
sive physics alone. The behavior system operates in
conjunction with a real-time, fully-dynamic, 3-D person
tracking system that provides a mathematically concise
formulation for incorporating a wide variety of physical
constraints and probabilistic inuences. The framework
takes the form of a non-linear recursive �lter that en-
ables even pixel-level processes to take advantage of the
contextual knowledge encoded in the higher-level mod-
els. Some of the demonstrated bene�ts of this approach
include: increase in 3-D tracking accuracy, insensitiv-
ity to temporary occlusion, and the ability to handle
multiple people.
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Figure 4. Top: frames showing self-occlusion during crossing. Left: tracking results without feedback.

Right: correct tracking when feedback is enabled.
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