
The Context Fabric: An Infrastructure for Context-Aware
Computing

Jason I. Hong
Group for User Interface Research, Computer Science Division

University of California, Berkeley
Berkeley, CA 94720-1776 USA

jasonh@cs.berkeley.edu

Abstract
Despite many sensor, hardware, networking, and software
advances, it is still quite difficult to build effective and reli-
able context-aware applications. We propose to build a
context infrastructure that provides three things to simplify
the task of building context-aware applications: a context
data store for modeling, storing, and distributing context
data; a context specification language for declaratively stat-
ing and processing context needs; and protection mecha-
nisms for safeguarding privacy needs.

Keywords
Context awareness, context-aware computing, data models,
context specification language, implicit input, privacy

INTRODUCTION
Context – the circumstances in which an event occurs; a
setting; to join; to weave (American Heritage Dictionary)

A great deal of effort has gone into the field of context-
aware computing over the past few years, building applica-
tions that have a greater awareness of the physical and so-
cial situations in which they are embedded. From a compu-
tational perspective, there are four goals for context-aware
computing:
• Increasing the number of input channels into computers
• Pushing towards more implicit acquisition of data
• Creating better models that can take advantage of this

increased input
• Using the increased input and improved models in new

and useful ways

The problem is that it is still extremely difficult to build
these kinds of applications. There are five reasons why
these goals have been difficult to achieve. First, the same
context data can come from many sources. For example,
location information can come from active beacons, GPS,
or cell phones. Second, the context data is highly distrib-
uted, possibly coming from and being used anywhere, any-
time. Third, the data models have generally been applica-
tion-specific and inflexible, making it difficult to share con-
text data. Fourth, these data models have not addressed
security and privacy concerns. Fifth, it is difficult to pro-
gram applications in an environment that is constantly
changing in terms of sensors, services, and context data.

Previous work in context-aware computing has focused on
the first point. There have been few inroads into the other
issues of distribution, modeling, privacy, and robustness.
This work focuses on developing an infrastructure, called
the Context Fabric, to address these issues [2]. We are de-
signing three key features to help developers create robust
applications:

• A flexible and distributed data store to make it easy to
model, store, and disseminate context data

• A context specification language for declaratively stating
and processing context needs

• Reasonable and customizable privacy mechanisms to
help protect context data about end-users

We give a brief overview of each of these below.

CONTEXT DATA STORE
One existing problem with context is how to represent it in
a way that many applications can use. Another existing
problem is where to store context data and how to distribute
it so that it can be accessed on any device, whenever and
wherever it is needed. To address these issues, we are de-
signing a context data store, consisting of a logical context
data model and a physical data store.

The logical context data model is a way of representing
entities such as people, places, and things. The context in-
formation itself is represented using four concepts: entities,
attributes, relationships, and aggregates. Entities are simply
people, places, and things. Entities represent the base level
of context, on top of which more sophisticated representa-
tions can be built. Each entity also has access control asso-
ciated with it, limiting which applications and which people
can access its data. Attributes describe some property of an
entity. For example, people, places, and things all have
names. Relationships are special kinds of attributes that
point to other entities. For example, a person could cur-
rently be in a specific place, and this place could contain
several things. Aggregates are a way of grouping existing
entities, and are one way more sophisticated representations
of context can be modeled. For example, an action can be
modeled as the person doing the action, the place the action
takes place, and the things used. A work group can be mod-
eled as a collection of the people in that group. A room can
be modeled as a place and all of the things in that place.

The physical data store manages how and where the con-
text data is actually stored. The physical data store distrib-
utes the data so that copies of the context data can exist in

Copyright is held by the author/owner(s).
CHI 2002, April 20-25, 2002, Minneapolis, Minnesota, USA.
ACM 1-58113-454-1/02/0004.

multiple places. For example, a person’s private context
information might reside in her Palm Pilot and in her com-
puter at home, while her context information at work might
reside in an office computer. This approach makes it easier
to scale the system up for large numbers of entities and
across wide areas. It also increases robustness to failure by
improving the availability of context information. Further-
more, it is more efficient to put the context data close to
where it is generated and where it is likely to be used.
Lastly, it distributes responsibilities in terms of administra-
tion, maintenance, and protection of data.

One advantage of this approach is that it decouples context
acquisition from context modeling from context usage. For
example, a GPS sensor can send a location update. A loca-
tion service could take this raw sensor data, process it, put it
in the right data format, and update the location attribute for
the mobile computer. Later on, multiple applications can
request and use that context data. This decoupling makes it
easier to update and evolve the infrastructure, as well as
making it more robust to individual failures.

CONTEXT SPECIFICATION LANGUAGE
The Context Specification Language (CSL) addresses the
problem of programming context-aware applications in a
dynamically changing and heterogeneous environment, with
context data distributed across many devices. These issues
make it difficult to program context needs procedurally.

CSL is a declarative way of stating context needs at a high
level, providing a clean programming abstraction to the
context data in the same way SQL does for relational data-
bases. At a conceptual level, CSL statements are things like
“What are the five nearest movie theaters to me?” and “Is
Scott busy now?” CSL statements are processed by a local
Context Service, with one Context Service per device. The
Context Service processes CSL statements, locally if all of
the context data is available, or expanding and asking other
Context Services in the infrastructure if needed. The Con-
text Service handles queries, such as “How many people are
in the room right now?”, as well as events, such as “Notify
me every time a person enters the room.”

PRIVACY MECHANISMS
Privacy is perhaps the most debated issue with respect to
ubiquitous, context-aware computing. The difficulty here is
to find the right balance between the needs of individuals
and the needs of governments and societies to properly
function. We are currently planning on implementing pri-
vacy mechanisms directly into the infrastructure, including
restricting certain kinds of context queries to be processed
if and only if the person making the query is physically
nearby, automatically garbage collecting or aggregating old
context data, and allowing context queries to return inten-
tionally ambiguous answers.

EVALUATION PLAN
There are five distinct dimensions for evaluations. The first
is to see if the data model is expressive enough to model

enough domains that are interesting and useful. The second
is to learn if the Context Specification Language is power-
ful enough to abstract out the complex details. The third is
to ensure that the overall system is robust to changes in
environment as well as to failures. The fourth is to discover
if we have enough useful mechanisms for privacy. The fifth
is to find out if the infrastructure makes it easier to develop
context-aware applications.

The basic method is to use an iterative design process,
working out designs, implementing, deploying, building
applications on top, and then refining before going to the
next iteration. For the first iteration, we plan to start simple,
re-implementing existing context-aware applications and
informally evaluating them along the dimensions described
above. For the second iteration, we plan to build two more
applications, as well as convince others to try building some
applications, and see what works and what does not.

RELATED WORK
Schilit’s ParcTab system [4] was the first context-aware
system infrastructure. We are extending his work by in-
creasing the distributed nature of the context data, adding
security and privacy features, and providing a higher level
programming interface.

The Interactive Workspaces EventHeap [3] also has simi-
larities. It is a central space where devices and services can
post data and events. The EventHeap is designed for con-
necting devices in a local room together. We are taking
some of the ideas from the EventHeap and seeing if we can
adapt them for context-aware applications.

The Context Toolkit [1] is closest to our work. The Context
Toolkit took an "operating systems" approach, providing an
abstract layer for sensors. Hardware is primary, while data
formats and modeling are secondary. In contrast, we take a
"database" approach, focusing more on how the data will be
modeled, distributed, protected, and used, making data pri-
mary, and hardware secondary.

ACKNOWLEDGEMENTS
Thanks to my advisor James Landay, Mark Newman, Keith
Edwards, and Anind Dey for comments. Thanks also to
DARPA, Intel, and Xerox PARC for funding this research.

REFERENCES
[1] Dey, A.K., D. Salber, and G.D. Abowd, A Conceptual

Framework and a Toolkit for Supporting the Rapid Prototyp-
ing of Context-Aware Applications. Human-Computer Inter-
action (HCI) Journal, 2001. 16(2-3).

[2] Hong, J.I. and J.A. Landay, An Infrastructure Approach to
Context-Aware Computing. Human-Computer Interaction
(HCI) Journal, 2001. 16(2-3).

[3] Johanson, B., A. Fox, P. Hanrahan, and T. Winograd, The
Event Heap: An Enabling Infrastructure for Interactive Work-
spaces. 2000. http://graphics.stanford.edu/papers/eheap

[4] Schilit, B.N., A Context-Aware System Architecture for
Mobile Distributed Computing, 1995.
http://www.fxpal.xerox.com/people/schilit/schilit-thesis.pdf

