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Abstract 

We present algorithms for coupling and training hidden 
Markov models (HMMs) to model interacting processes, 
and demonstrate their superiority to conventional HMMs 
in a vision task classifying two-handed actions. HMMs 
are perhaps the most successful framework in perceptual 
computing for modeling and classifying dynamic behaviors, 
popular because they offer dynamic time warping, a training 
algorithm, and a clear Bayesian semantics. However the 
Markovianframework makes strong restrictive assumptions 
about the system generating the signal-that it is a single 
process having a small number of states and an extremely 
limited state memory. The single-process model is often 
inappropriateforvision (and speech) applications, resulting 
in low ceilings on model performance. Coupled HMMs 
provide an efJicient way to resolve many of these problems, 
and offer superior training speeds, model likelihoods, and 
robustness to initial conditions. 

1. Introduction 

Computer vision is turning to problems of perceiving and 
interpreting action, sparking interest in models of dynamical 
behavior used elsewhere in perceptual computing, particu- 
larly hidden Markov models (HMMs). HMMs are presently 
the most favored model in speech and vision, mainly because 
they can be learned from data and they implicitly handle 
time-varying signals. Their clear Bayesian semantics also 
makes them well-suited for computing with uncertainties. 

An HMM is a quantization of a system’s configuration 
space into a small number of discrete states. A single fi- 
nite discrete variable s indexes the current state of the sys- 
tem. State changes, approximating the dynamics of the 
system, are described by a table of transition probabilities 
Pilj 2 P,(t)=ils(t-l)Zj. This representation succeeds to the 
degree that the system fits the Markov condition: Any in- 
formation about the history of the process needed for future 
inferences must be reflected in the current state. Conse- 
quently, HMMs are ill-suited to systems that have compo- 
sitional state, e.g., multiple interacting processes that have 
structure in both time and space. For example, in video 
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signals one might want to model the behavior of players 
in a sport, or, more generally, of multi-participant actions 
normally described by natural language verbs (e.g., “A gave 
B the C.“). We present algorithms for coupling and training 
HMMs to model interactions between processes that may 
have different state structures and degrees of influence on 
each other. These problems often occur in vision, speech, 
or both-coupled HMMs are well suited to applications re- 
quiring sensor fusion across modalities. 

2. HMMs and the Markov condition 

A hidden Markov model consists of a set of discrete states 
S = {st , ~2, sg, . , SN}, a state variable s(t) E S, state- 
to-state transition probabilities Pilj k P,(,)=i~~(~-t)=j, 1 < 
i, j < N, prior probabilities for the first state P,(t+, and 
output probabilities for each state Pi(o) - P,(,+(o(t)). 
Graphically, Markov models are often depicted “rolled out 
in time” as probabilistic inference graphs: 

time 

Square nodes represent the observations o(t); circular 
nodes represent the hidden state variable s(t); horizontal 
arcs represent the transition matrix PS(t)l,(t-,); and param- 
eters associated with the vertical arcs determine the probabil- 
ity of an observation given the current state Ps(,)(o(t)), e.g., 
these parameters may be means and covariances (pi, Xi) of 
multivariate Gaussians. The state variable and the output 
vary over time, and at any any time t, memory is limited to 
the value of state variable s(t - 1). 

Conventional extensions to the basic Markov model are 
generally limited to increasing the memory of the system 
(durational modeling), which give the system compositional 
state in time. We are interested in systems that have com- 
positional state in space, e.g., more than one simultaneous 
state variable. Recently, Jordan, Saul, and Ghahramani have 
developed a variety of higher-order HMMs, including fac- 
torial HMMs [5] for independent processes; linked HMMs 
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[8] that model noncausal (contemporaneous) symmetrical 
influences; and hidden Markov decision trees [7] that fea- 
ture a cascade of noncausal influences from master to slave 
HMMs. The training algorithms are based on an equiva- 
lence between HMMs and a class of Boltzmann machine 
architectures with tied weights [9, lo]. The linked HMM 
excepted, these algorithms use mean-field approximations 
from statistical mechanics. 

We present an algorithm for coupling two HMMs with 
causal (temporal), possibly asymmetric influences. Theo- 
retical and empirical arguments for this architecture’s ad- 
vantages can be found in [2]. To illustrate the difference 
between causal and noncausal couplings, imagine modeling 
opponents in a tennis match: The noncausal HMM cou- 
plings can represent the fact that it is unlikely to see both 
players playing net simultaneously; the causal HMM cou- 
pling can represent the fact that one player rushing to the net 
will drive the other back and restrict the kinds of returns he 
attempts. 

The coupling algorithm is based on projections between 
component HMMs and a joint HMM; in principle it is also 
possible to derive an approximation algorithm in the mean 
field framework or an exact algorithm using junction-tree 
representations [6]. Our experiences with these methods 
have led to somewhat inferior models and extremely long 
computations, respectively. We sketch our coupling al- 
gorithm here; a detailed exposition including convergence 
properties and performance analysis can be found in [2]. 

3. Coupling and Factoring HMMs 
Two HMMs are coupled by introducing conditional prob- 

abilities between their hidden state variables. The resulting 
distribution does not satisfy the Markov property. Therefore 
there is no simple decomposition of the prior probability 
that might lead to simple parameter estimation procedures. 
The traditional work-around for modeling a system with two 
state variables forms a super-HMM from the Cartesian prod- 
uct of all possible states. This is unsatisfactory because the 
number of states is now squared and training data becomes 
very sparse on a per-state basis. However, with a very large 
number of parameters it is very easy to raise the posterior 
probability of the model, but the result is gross over-fitting 
of the data and consequently poor generalization. Our al- 
gorithm takes this oversized parameter space and embeds 
within it a subspace manifold which represents all possi- 
ble parameterizations of a much smaller system of coupled 
HMMs. Forward-backward analysis obtains posterior state 
probabilities in the larger space; we calculate the closest 
point on the manifold and reestimate so that the posterior 
probability of the model increases but the parameters stay 
on the manifold. 

We obtain a joint HMM C from two component HMMs 
A, B by taking the Cartesian product of their states ai, bj 

and transition parameters Pa,laj Pbklbl. This results in a 
quadratic state table with joint states cij = { ai, bj}. We 
obtain transition and output probabilities as follows: 

Note that we have introduced coupling parameters 
Pa,lblPbklaj. If the combining function ‘I’ is linear and re- 
spects sum-to-one constraints, linear projections will factor 
the joint HMM back into its components. 

Pbklbl = 

where Pb, = l/](B)] and Pa, = l/](A)] in the absence of 
any posterior probabilities. 

This projections factors the ( 1 {A} 1. I { B} ])2-dimensional 
transition table of the joint HMM into I{ A} 12- and ] { B} 12- 
dimensional transition tables which parameterize two com- 
ponent HMMs. Note that we may just as easily define 
a projection which factors out the interaction between the 
component HMMs: 

This is the basis of an algorithm in which a joint HMM 
is trained via standard HMM methods but constrained to 
factor consistently along both projections. As propels it up 
through likelihood space, we factor and reconstitute it, thus 
simultaneously training the component HMMs. Here we 
formulate the algorithm with factoring after reestimation of 
the joint HMM; factoring can also be done after forward- 
backward analysis, so that reestimation can occur in the 
component HMMs, e.g.: 

pa(t)=z,e(t-l)=j10 = 
c, c, Cd,:-I P,,I,l P,(,)d4~N CL,,, 

P(O) (3 

where C and C’ are the forward and backward variables 
for the joint HMM. Eqns. 6,7 are approximations that allow 
substantial speed-ups but sacrifice some information. 
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Note that we do not take the Cartesian product of the out- 
put parameters. They are reestimated directly in the compo- 
nent HMMs using posterior component state probabilities. 
This has three advantages: (1) 0(2N) output parameters 
are reestimated instead of 0(N2); (2) the statistics are more 
robust; (3) forward-backward analysis and run-time Viterbi 
analysis are considerably faster, since the bulk of compu- 
tation is in computing multivariate Gaussians and this is 
reduced by O(N). E.g., recognition with a CHMM can be 
considerably faster than with a conventional HMM with the 
equivalent number of joint states. 

In principle, factoring and reconstitution can violate the 
conditions under which convergence is guaranteed, because 
the factorings into transition and coupling probabilities may 
not be consistent. To restore the convergence property, we 
introduce a post-factoring conditioning step which guaran- 
tees that the model parameters have moved to a point on the 
manifold with higher posterior probability. A simple gradi- 
ent descent will find a point on the manifold closest to the 
maximum posterior probability parameterization. If U, V 
are two factorings of the transition probabilities out of any 
joint state, the gradient toward the closest manifold point is 

dE 
zy =c 2UiV3 - 2Vj Wij 

1 2’x Vj (Ui Wj - Wij) (8) 

In practice, conditioning results in a very small improve- 
ment, and the unconditioned algorithm has always con- 
verged. The results reported below were obtained without 
conditioning. 

4. Experiments 

T’ai Chi Ch’uan is a Chinese martial art and meditative 
exercise, consisting of stylized full-body and upper-body 
gestures. Like most signals generated by human activity, 
these gestures are the result of multiple interacting pro- 
cesses. A simple way to decompose upper-body gestures 
is to treat each arm as a process. The arms are neither in- 
dependent nor wholly mutually determined; some form of 
interactional modeling is appropriate. 

4.1. Data collection and preprocessing 
Using a self-calibrating stereo blob tracker [l], we ob- 

tained 3D hand tracking data for three T’ai Chi gestures 
involving arm-motions: the left’ single whip, the left cobra, 
and the left brush knee. Figure 4.1 illustrates the gestures, 
the blob-tracking, and the feature vectors. 

We collected 52 sequences, roughly 17 of each gesture. 
The extracted feature vector consisted of the 3D (x, y, Z) 

1 Many T’ai Chi forms have mirror-image counterparts. 

centroid (mean position) of each of the blobs that character- 
ize the hands. All the gestures were performed by the second 
author, seated in a swivel chair and moving her upper body 
and hands. Each gesture began with both hands in a rest 
or neutral position and ended with the hands in a gesture- 
specific final position or returning to neutral position. The 
main sources of noise were blob instabilities, variations in 
the performance of each gesture, and variations in initial 
body rotation and position from sequence to sequence. The 
extracted feature vector, being simple (z, y, Z) positions, 
reflects this noise directly. 

The frame rate of the vision system varied from lo-20 Hz. 
We resampled the data using time-stamped frames and cubic 
spline interpolation to produce a 30Hz signal, then low-pass 
filtered with a 3Hz cutoff. Similar preprocessing is used 
by Campbell et al. [4], who go on to convert the feature 
vector to head-centered cylindrical coordinates velocities 
(dr, d6’, dz) for rotation and shift invariance; we remain with 
raw 3D (2, y, z) coordinates. The resulting six-dimensional 
time series data ( xe,, y,. , Z, , zr , yr , 21) was used for training. 

4.2. Results of training different architectures 

Three HMM architectures, reflecting different indepen- 
dence structures between hidden states, were trained and 
tested to find the optimal number of states to model each 
gesture. 

1. 

2. 

3. 

Conventional HMMs: 3-state models for cobra 
and single whip; a 5-state model for brush knee. 

Linked HMMs (a simplification of CHMMs with 
symmetric noncausal joint probabilities between 
chains): 2+2-state models for the cobra and sin- 
gle whip, and a 3+3-state model for the brush knee. 

Coupled HMMs: 3+3-state models for cobra and brush 
knee, and a 3+2-state model (a 3-state chain cou- 
pled with a 2-state chain) for the single whip ges- 
ture. This accords with our intuitions about the sin- 
gle whip, in which one hand does most of the work. 

Once appropriate state counts were found, 50 instanti- 
ations of each model were trained on 5 randomly selected 
instances of gesture, and the best (highest-likelihood) mod- 
els were kept for comparison. We did this because HMMs 
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Figure 1. Selected frames from the gestures overlaid with hand blobs from vision. Graphs in the bottom row show the evolution 
of the feature vector over time. Sequences may be viewed at http : / /vismod .www. media .mit . edu/archive 
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are known to produce models of varying quality, even when 
trained repeatedly with the same data. In all cases, the mod- 
els were set up with a full state-to-state connection topology, 
so that the training algorithm was responsible for determin- 
ing an appropriate state structure and sequence for the train- 
ing data. LHMMs and CHMMs have two output variables, 
allowing us to split the right-hand and left-hand data streams. 

4.3. Results of classification test 

To compare the performance of the three previously de- 
scribed architectures in a classification task, we used the 
trained models to classify the full data set of 52 gestures. 
The Viterbi algorithm was used to find the maximum like- 
lihood model for HMMs, and a modified Viterbi procedure 
was used on the joint forms of the LHMMs and CHMMs. 
Despite use of the joint forms, there were negligible dif- 
ferences in compute times between the three architectures. 
Two-thirds of the testing data was not been seen in training, 
including gestures performed at varying speeds and from 
slightly different views. Figure 2 shows the per-sequence 
likelihoods for each of the models. 

Summing up figure 2, the classification accuracies are: 

~~ 

The bottom row shows the number of degrees of freedom in 
the largest best-scoring model: state-to-state probabilities + 
output means + output covariances. The conventional HMM 
has a large number of covariance parameters because it has 
a 6-D output variable; the other architectures have two 3-D 
output variables. 

We were surprised by the low accuracy (*) of the LHMM 
in classifying all the sequences. This is because the LHMM 
model of the cobra did not not correctly model its tem- 
poral structure; having a very low discrimination power, it 
claimed nearly all sequences. In fact, the LHMM performed 
significantly better than the HMM on the other two gestures. 

We note that Campbell et al. [4] were able train con- 
ventional HMMs with (ICI, yi, ~1 , 2,. , yr , z,.) feature vectors 
to classify 18 different T’ai Chi gestures with accuracies 
as high as 94%. The HMMs had carefully tuned transition 
topologies and were each trained on 18 examples of gestures 
constrained not to have rotational or transitional variation 
(with variation, rates fell to 34%). Similar circumstances 
would certainly raise the we obtained. 

Figure 2. Classification by the CHMM, LHMM, and 
HMM, showing per-sequence normalized log likelihood. 
The left third of each graph represent single whip ges- 
tures; the middle third represent brush knees; and the 
right third represent cobras. The curves show the prob- 
ability of each model on each sampled gesture. As the 
top graph illustrates, only the CHMM models correctly 
discriminate the appropriate gestures. 

five examples of a gesture. This was repeated fifty times 
per gesture and architecture. After training, each model was 
tested on all examples of its gesture, and we calculated the 
mean and variance of the resulting posterior probabilities. 
Fitting Gaussians to these statistics, we obtained the distri- 
butions depicted in figure 3, which shows the probability 
distribution of the per gesture likelihood for coupled, linked 
and single HMMs. 

Conventional HMMs were quite sensitive to the initial 
values of the parameters. LHMMs were generally more 
robust, depending on the structure of the gesture. Finally, 
CHMMs were least sensitive to initial conditions and pro- 
duced the highest likelihood models. 

These results also show why the HMMs performed as 
well as they did in the classification test. In choosing the 
best-of-50, we took models from the right (optimal) end of 
the distribution. Had we picked typical models (the mean), 
the HMMs would have done quite a bit worse than their 
already mediocre performance. 

4.4. Sensitivity analysis 

HMMs are notoriously sensitive to the random values as- 
signed to parameters at initialization of training. To test the 
sensitivity of final model likelihoods to initial conditions, 
we randomly initialized each architecture and trained it on 

4.5. Discussion 
The CHMMs outperform the other models because the 

two hands are separate but coordinated processes. To the 
HMM and LHMM, variations in their coordination can only 
be modeled as noise; to a CHMM, these variations contain 
information that can be modeled by the coupling probabil- 
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Figure 3. Likelihood probability distribution for each HMM type, learning single whip, cobra, and brush knee gestures, 
respectively. The CHMM produces the most likely models with a high consistency, indicated by the rightmost distributions. 

ities. The dynamic programming algorithms (Viterbi and 
forward-backward analysis) used in conventional HMMs 
automatically handle variations in tempo; in CHMMs this 
extends to variations in process synchronization (up to some 
point where the system is so out of sync that it is no longer 
recognizable). It is important to point out that issue here 
is degree of synchronization of the underlying states of the 
two processes, not of their output signals. Thus CHMMs can 
work with enormous variation in the signals. This accounts 
for some of the robustness the CHMMs achieve despite 
unusually small training samples; it is demonstrated more 
emphatically in another project where CHMMs are used to 
identify complex actions in video from the varying spatial 
relations between hands, tools, and objects [3]. 

5. Conclusion 

Hidden Markov models (HMMs) are used widely in per- 
ceptual computing as trainable, time-flexible classifiers of 
signals that originate from processes like speech and ges- 
ture. We believe that a conventional HMM is nut a good 
model because most interesting signals fail to satisfy the re- 
strictive Markov condition. Speech recognition researchers 
have grown increasingly frustrated with the performance of 
HMMs for this very reason, and vision researchers will run 
into it even faster. We have presented a mathematical frame- 
work for coupled hidden Markov models (CHMMs) which 
offers a way to model multiple interacting processes with- 
out running afoul of the Markov condition. CHMMs couple 
HMMs with temporal, asymmetric conditional probabilities. 
To demonstrate their superiority to conventional HMMs, we 
used a variety of HMM-based architectures to do visual clas- 
sification of two-handed gestures from T’ai Chi, a martial 
art. CHMMs yield higher likelihood models with better dis- 
criminatory power in fewer epochs and these models often 
runh faster than comparable HMMs in a modified Viterbi 
algorithm. In addition, CHMMs are far less sensitive to ini- 
tial conditions than conventional HMMs, e.g., they are more 
reliable. We also compared CHMMs with linked HMMs 
(LHMMs), which have atemporal, symmetric joint proba- 
bilities between chains. LHMM architectures have been 
proposed as a desirable higher-order HMM architecture, but 
experiments show that CHMMs offer a significantly more 

appropriate model of the conditional independence structure 
of human gesture. 

6. Acknowledgements 
Thanks to Andy Wilson for basic Matlab HMM code; Ali 

Azarbayejani for the self-calibrating stereo hand tracker; Dave 
Becker for T’ai Chi guidance; and Mike Jordan for illuminating 
conversations about HMMs. 

References 
[II 

PI 

[31 

[41 

PI 

[61 

[71 

181 

[91 

UOI 

A. Azarbayejani and A. Pentland. Real-time self-calibrating 
stereo person-tracker using 3-D shape estimation from blob 
features. In Proceedings, International Conference on Pat- 
tern Recognition, Vienna, August 1996. IEEE. 
M. Brand. Coupled hidden markov models for modeling in- 
teracting processes. Forthcoming (under review), November 
1996. Also available as MIT Media Lab Vision and Modeling 
TR #405. 
M. Brand. The “Inverse Hollywood Problem”: From video to 
scripts and storyboards via causal analysis. In Proceedings, 
AAA197, 1997. 
L. W. Campbell, D. A. Becker, A. Azarbayjani, A. F. Bobick, 
and A. Pentland. Invariant features for 3-D gesture recogni- 
tion. In Proceedings, International Conferenceon Automatic 
Face and Gesture Recognition, pages 1.57-162, Killington, 
VT, 1996. IEEE. 
Z. Ghahramani and M. I. Jordan. Factorial hidden Markov 
models. In D. S. Touretzky, M. C. Mozer, and M. Hasselmo, 
editors, Advances in Neural Information Processing Systems, 
volume 8, Cambridge, MA, 1996. MIT Press. 
F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian up- 
dating in recursive graphical models by local computations. 
Computational Statistical Quarterly, 41269-282, 190. 
M. I. Jordan, 2. Ghahramani, and L. K. Saul. Hidden Markov 
decision trees. In D. S. Touretzky, M. C. Mozer, and M. Has- 
selmo, editors, Advances in Neural Information Processing 
Systems, volume 8, Cambridge, MA, 1996. MIT Press. - 
L. K. Saul and M. I. Jordan. Boltzmann chains and hidden 
Markov models. In G. Tesauro, D. S. Touretzky, and T. Leen, 
editors, Advances in Neural Information Processing Systems, 
volume 7, Cambridge, MA, 1995. MIT Press. 
I? Smyth, D. Heckerman, and M. Jordan. Probabilistic inde- 
pendence networks for hidden Markov probability models. 
AI memo 1565, MIT, Cambridge, MA, Feb. 1996. 
C. Williams and G. E. Hinton. Mean field networks that learn 
to discriminate temporally distorted strings. In Proceedings, 
Connectionist models summer school, pages 18-22, San Ma- 
teo, CA, 1990. Morgan Kaufmann. 

999 

Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR '97)
1063-6919/97 $10.00 © 1997 IEEE 


