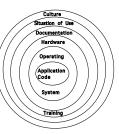
Lecture 3 Human-Centered Development and the Scenario-Based Approach Part 1: Human-Centered Development DILBERT


Three Approaches to UI Design

- Attitude of technology-centered development
 - Progress made by technological advances
 - The more bells & whistles the better
- Attitude of designer-centered development
 - Progress made by considering the intuitions of the designer
 - Imagining what the user will do and feel
- · Attitude of human-centered development
 - Progress made by incorporating the users into the design process
 - Empirical studies integrated early into the design

The User "Interface" as Human-Computer Interaction

Definition

· Any part of the computer system that the user comes in contact with either physically, perceptually, or conceptually.

Human-centered software development

- Definition
 - Early and Continual Focus on Users
 - Direct contact through interviews, observations, surveys, participative design in order to understand characteristics of users and their jobs

 - Integrated Design
 All aspects of usability evolve in parallel; All aspects of usability under one focus or person
 Early and Continual User Testing
 - - Throughout development, intended users do real work with simulations and prototypes; their performance and reactions are measured qualitatively and quantitatively

 - | Iterative Design
 The system (functions, user interface, help system, reading material, training approach) is modified based upon results of user testing; testing cycle is repeated

Iterative Model of Development

· Describe steps in method

Compare to the Waterfall Model

Steps in method (note: iterative!)

- Planning
 - Scope of project, investigate user population (document analysis, interviews, surveys, observation) & related systems
- Analysis (R&C Requirements Analysis)
 - Task analysis, problem scenario development, requirements for usefulness and usability
- Design (R&C Activity, Information & Interaction Design)
 - Specifications (yes!) for the human-computer interaction (UI?)
- Implementation (R&C Prototyping)
 - Storyboards, mock-ups, software prototypes
- Usability Evaluation (R&C Evaluation)
 - Evaluation without users: cognitive walkthrough, heuristic evaluation (guidelines), GOMS, Keystroke Level Model (KLM)
 - Evaluation with users (usability testing, interviews,

Purpose of Human-Centered Development

- Usefulness (Functionality)
- Usability for skilled users
 - Performance time
 - Failure (Errors)
 - Enjoyment
 - Robustness
 - Fatigue/Stress
 - Safety
- Learnability
 - Learning time
 - Misconceptions

Part 2: Scenario-Based Design

Chapters 1 & 2 Rosson & Carroll

What is a scenario?

- A story about people and their activities containing the five "W's"
 - When
 - Where
 - Who
 - What (and How)
 - Why

Matching the W's to Scenario Components

When: Setting Where: Setting

• Who: Actors/Stakeholders

• What (and How): Tasks, activities, plans, resources, events

• Why: Goals, rationale, claims, expectations,

benefits

Why scenarios?

- Context-sensitive: bring out the situation of use
- · Vivid descriptions: Easy to create and remember
- Can be used in many ways during development
 - Current work practices scenario
 - Proposed system problem scenario
 - Activity scenario
 - Usability testing task scenario

Requirements Analysis

- Definition: Early phase of software development in which needs of clients with respect to a proposed system are analyzed
- Evolving detailed description of *what* the system should do and why
- Does not describe *how* the system should do it such as the detailed UI design

Phases of Requirements Analysis • Existing system • Proposed system Products of Requirements Analysis • Root Concept • Stakeholder profiles • Tasks carried out by stakeholders • Problem Scenarios Root Concept • high-level vision: problem statement and proposed solution · basic rationale • stakeholder groups & how they will benefit • starting assumptions

Stakeholder Profiles • Background • Expectations • Preferences • Relationships Task Descriptions • Tasks carried out by stakeholders • Hierarchical task analysis **Problem Scenarios** • the setting • the people involved

• task goals, expectations, plans and actions

• artifacts, technology, and systems involved

• events created by the environment

of the people

(resources)

How do you get this information? • Artifact analysis • Interviews • Observation • Participation • Survey/Questionnaire Artifact Analysis • Collect and examine the documents, objects and other resources that people use in their activities • Try to understand the content of the information and the role it plays in activities Interviews • Advantages - Gathers opinion, Creates rapport • Disadvantages - Must be well-planned - Bias: Information often filtered • Types - Structured • Fixed set of questions with simple answers - Unstructured · More open questions

Observation

- Advantages
 - Not an opinion, but an objective record
 - Captures detail
- Disadvantages
 - Intrusive, Time consuming
- Types
 - Passive: "Hanging out"
 - Used in very early design when don't have much information about user's activities
 - Active
 - Provide users with problems to solve or tasks

Participation

- When the observer learns and participates in the work activities
- Overcomes the Hawthorne effect
 - Bias of being observed
- Obtain otherwise privileged information
- · Creates first-hand domain knowledge

Survey/Questionnaire

- Purpose
 - Reaches lots of people
 - Perform statistical analysis on data
 - Avoids bias by anonymity
 - Consistent questions
- Design Issues
 - Must be carefully designed, do pilot
 - Must not be time-consuming & easy to reply
 - Must make sense
 - Must gather precise answers, not vague ones
 - Ask only questions which support the design
 - Sample vs. population