
The following remarks are excerpted from a gen-
eral session presentation delivered at CSI’s NetSec
Conference in St. Louis, MO, on June 15th, 1999.

At Counterpane Systems, we evaluate security
products and systems for a living. We do a lot
of breaking of things for manufacturers and
other clients. Over the years, I’ve built a body
of lore about the ways things tend to fail. I
want to share my “top 20 list” of what’s wrong
with security products these days.

Cryptography is a really neat technology, be-
cause it allows us to take existing business and
social constructs from the real world and move
them into the world of computer networks.
This is actually the big idea of cryptography. It
doesn’t do anything new, it doesn’t do anything
magical. All it does is take existing things and
move them onto networks.

Privacy, fairness, authentication—we know
how they work and what to do with them. But
now we want to do them on networks; we
want to do them remotely. Cryptography has
the potential of transforming the Internet, or
any network, from an academic toy into a real
business tool by allowing us to do real busi-
ness—for example, signing and enforcing con-
tracts or doing e-commerce.

Unfortunately, most of the products I see
aren’t very good. They have problems, they’re
broken. Most cryptography in these products
doesn’t perform as advertised, and neither do
some monitors.

Programming Satan’s Computer
Security engineering is not like any other type of
engineering. An engineer who’s building some-
thing will spend all night to make it work.

That’s quintessentially what a good hack is. It
works, it’s functional. In a normal product, it’s
what it does that’s impressive.

But security products are not useful because of
what they do; they’re useful precisely because of
what they don’t allow to happen. Security has
nothing to do with functionality.

If you were to build a word processor and
wanted to know if it printed, you could plug a
printer in, push the print button, and see if a
printed document came out. If you’re building a
encryption product, you can put a file in, watch
it encrypt and decrypt. You know it works, but
you have no idea if it’s secure or not. And that’s
a big deal. What it means is that you can’t tell if
a product’s secure simply by examining it, sim-
ply by running it through functional tests.

No amount of beta testing will find a security
flaw. In many ways, security engineering is sim-
ilar to safety engineering. But there is a differ-
ence. Safety engineering has to do with making
something work in the presence of random or
transient faults (i.e., Murphy’s Law). Security
programming involves making sure something
works even in the presence of a malicious ad-
versary who will make exactly the wrong thing
fail at exactly the wrong time and do it again,
and again, and again, and again to break the se-
curity. That’s why I call it programming Satan’s
computer. You program a computer with the as-
sumption that a malicious adversary intent on
defeating the system is living inside the system.
Security is supposed to provide some way to en-
capsulate him.

Testing Satan’s Computer
Security is orthogonal to functionality. Security
has nothing to with what the product does, or

Computer Security Journal • Volume XV, Number 4, 1999 1

Security in the Real World:
How to Evaluate Security Technology
By Bruce Schneier

C R Y P T O G R A P H Y

how well it does it, or how good the user inter-
face is. You can’t give a product to a thousand
random people, have them beta test it for a
month and really learn anything about the se-
curity. They can tell you if it works and how
functional it is, but they can’t tell you if it’s bro-
ken or not. Generally, to test security, at least
in the real world, you just put the product out
there and experienced security professionals,
either working for industry, or in academia, or
working on their own
(commonly known as
hackers), find flaws
and alert the New
York Times and you
get your feedback
that way. Not terribly
useful. But it’s where
we’ve ended up.

Failure of Testing
Security

Imagine a vendor
shipping a product
without any func-
tional testing. No in-
house testing, no beta testing. The developers
just create the product, make short compiles,
and then ship it. It’s inconceivable that a prod-
uct built that way would not have any bugs.
It’s hard enough to get rid of all the bugs when
you have all of those testings. But without
them, it’s just not going to happen.

Now, let’s look at a security product. Imag-
ine a security product shipping without any se-
curity testing. Similarly, the odds of it shipping
without any security flaws is negligible. And—
this is an important point—very few people do
real security testing. They do testing, but not
security testing.

How to Test Security
Experienced security testers can discover secu-
rity flaws. It’s not easy, it’s not fast, but it can
be done.

Security is like a chain; the weakest link will

break it. You can find security flaws in any part
of the product—for example, design, algo-
rithms, protocols, implementation, configura-
tion, user interface, procedures, how it’s
installed, how it interacts with other products.

Black box testing is something I never do, al-
though I’m asked to regularly. In black box
testing, you’re given the product in a shipped
form and asked to break it. It isn’t a terribly
useful test. You can do that and lots of flaws

are found that way, but
it’s not a real good
usage of your testing
dollar, because a lot of
the time is going to be
spent reverse engineer-
ing the C code, or fig-
uring out how it
works, or doing some-
thing else that you can
just mirror by giving
someone the actual
product, rather than
analyzing the security.
But when we do good
security tests, we get
everything. We get the

source code, we get the design documents, we
get to see how it works, and then we look for
security flaws that way. That’s a much more
cost-effective way of evaluating products. That
way, we can find things and fix them.

Unfortunately, there’s no comprehensive se-
curity checklist. There isn’t a list of a hundred
things that I can refer to and say, “they all
check, the product is secure.”

Envision your house. How do you know if
your house is secure? Are the doors secure?
Yes. Are the windows secure? Yes. Does that
mean your house is secure? Maybe. Where’s
the key to the house?

A group of art thieves in California would
break into people’s houses by cutting holes in
their wall with a chainsaw. That’s a really inter-
esting attack against a house. It bypasses most
security measures. So whether your house is
secure is not an easy thing to determine. And
it’s based on who the attacker is, what’s inside

2 Computer Security Journal • Volume XV, Number 4, 1999

C R Y P T O G R A P H Y

Flaws can be anywhere: the
threat model, design, algo-
rithms, protocols, implementa-
tion, configuration, user
interface, usage procedures,
etc. “Black box” testing isn’t
very useful. There is no com-
prehensive security checklist.
Experience in real-world fail-
ures is the only way to be a
good tester.

the house, what kind of threats you face. You
can’t just run through a checklist and say, “Yes,
the house is secure.”

Why Cryptosystems Fail
Why do cryptosystems fail? Why do things
break in the real world? Well, the reasons are
as numerous as there are systems. Every time I
put this list together
I’m always amazed by
some product vendor
that invents a new
way. But there are a
lot of common mis-
takes. Unfortunately,
we’ve seen a lot of
them since the 1970s.
And probably since
even before if we both-
ered to look. I don’t
mean this list to be ex-
haustive. Vendors
should feel free to
make new mistakes;
they’re always enter-
taining to see.

I’m going from the
inside out, from the mathematical out to the
systems—that’s the basic roadmap. They’re not
in entertaining order, so this isn’t actually a
“Top Ten” list. And they’re not in frequency.
They’re really from the math out to the user.

Use of Proprietary Algorithms
The first one is very mathematical. A lot of
products these days still use proprietary algo-
rithms. And this, to me, is amazing.

We have any number of known and trusted
(to various degrees) cryptographic algorithms
in the literature, designed by academics, re-
viewed by academics, and available for free.
Source code is available. It’s no work to use
them and yet companies again and again use
proprietary algorithms. This is bad, because

proprietary algorithms are rarely any good.
Designing cryptographic algorithms is very,

very difficult.
If you’ve been watching the Advanced En-

cryption Standard (AES) process that’s wend-
ing its way through the NIST approval process,
you know that 15 algorithms were submitted
from a worldwide call for algorithms meeting
a certain criteria. Four of them have been bro-
ken already. One of those four was broken

during the question
session when the al-
gorithm was pre-
sented.
The submission doc-
ument for the algo-
rithm I submitted
with my colleagues
at Counterpane was
the length of a book.
This is hard to do.
But even normally
rational people tend
to be blinded by a
bright shiny new al-
gorithm. It seems so
easy. The unfortu-
nate truth is anybody
can design an algo-

rithm that he himself cannot break. It’s actu-
ally profound. Anyone out there, from the
best cryptographer to the random person on
the street, can sit down with a pencil and
paper, design an algorithm and say, “I can’t
break it.” And then here’s the fallacy—be-
cause you can’t break it, you make the follow-
ing assumption: “Therefore, it must be secure.”

So we end up with lots of proprietary algo-
rithms. We have a lot of amateur cryptanalysts
who will design the algorithms, do some work
and then say, “Look I can’t break it, therefore
it’s secure.” My feeling is that if the designers
haven’t proven themselves by breaking several
published algorithms, why should I look at
their designs? The odds of them being secure
are pretty negligible. Indeed, the top five AES
candidates—this is top five based on a formal
poll of cryptographers—were actually de-

Computer Security Journal • Volume XV, Number 4, 1999 3

C R Y P T O G R A P H Y

Designing crypto algorithms is
very difficult. Many published
algorithms are insecure. Al-
most all unpublished algo-
rithms are insecure. Unless
someone has considerable ex-
perience crytpanalyzing algo-
rithms, it is unlikely that his
design will be secure. It is
easy for him to create an
algorithm that he himself
cannot break.

signed by teams that have cryptanalysts on
them. They seem to be the fastest, the most el-
egant, the best performing, the ones that seem
to be the most secure. Still, nobody trusts
them—give us a couple of years to stare at
them. Eventually, we’re going to have a new
standard.

There’s no reason that
I can think of ever to use
a new and unanalyzed
algorithm. There’s never
any benefit. There
might be the personal
pride of the designer.
Other than that, you
might as well use a
known algorithm. So
the moral there is “never,
ever trust a proprietary
algorithm.”

Use of Proprietary
Protocols

Similarly, we have lots of proprietary protocols.
And again, it’s the same lesson. Designing pro-
tocols is very, very hard. Many published pro-
tocols have been broken—years after their
publication flaws were discovered. People
who design protocols tend to be a specialized
breed and sort of an odd lot. They’ve built all
sorts of interesting tools to do protocol analysis.
There are some great tools for automated pro-
tocol checking. They’re basically reasoning en-
gines that look at a protocol and decide if you
can get knowledge that you’re not allowed to.
But even so, many companies will not use stan-
dards—whether the standard is Kerberos or
IPSec or SSL. But they’ll develop their own
thing. This, to me, is also odd. The public
process of, “Does it propose, analyze, revise,
etc.?” is a nice process. We’ve seen this with a
number of protocols—for example, with
S/MIME for e-mail, with IPSec for Internet. It’s
actually a really good process. You end up,
after several years, with a well-designed and ro-
bust protocol. That’s a good process. Compare

this with the Microsoft PPTP protocol, which
was designed by Microsoft, in their own labs
for their own use—it turned out to be pretty
badly broken. And I published a paper on that
last year. They have since released a fix, which
is better but is still broken.

Again, there’s no substitute for peer review.
One person can’t
do it. The public
process is a good
process. And given
that all of these
protocols are free,
it’s kind of silly to
invent your own.
You don’t have the
same expertise as
the public commu-
nity does. You
might as well let us
do your work for
you, that’s what

we’re here for. (Actually it’s not, but we like to
pretend we are.)

A closed protocol is most likely flawed. Con-
sider the protocols that are being used for digi-
tal cell phones, a whole bunch of broken
protocols, and broken algorithms too. That’s
another example of an industry that said, “Let’s
do it ourselves, let’s not engage the community,
let’s have closed proprietary standards.” You’re
going to see the same thing with digital con-
tent, the DVD and DIVX protocols, they’re
going to be broken within the year.

Bad Randomization
This is actually an interesting problem. It is
also probably the most serious problem in
products that use cryptography. Random num-
bers are critical for cryptography. You need
them for keys, seeds for generating keys, ran-
dom values to make protocols work, and ran-
dom values to make digital signatures work. If
your random number is broken, it doesn’t mat-
ter how good your algorithm protocol is. An
insecure random number generator (RNG) can

4 Computer Security Journal • Volume XV, Number 4, 1999

C R Y P T O G R A P H Y

The design process of public
proposal, analysis, revision, re-
peat seems to work pretty well.
Compare the security of the
proprietary Microsoft PPTP
with open IPSEC. There is no
substitute for peer review. A
closed or proprietary protocol
is most likely flawed.

compromise the entire system. One of the
flaws of Netscape Navigator that made the
press was a break in the random number gen-
erator. It didn’t matter how good the algorithm
was, the keys that came into it were very bad.
Lots and lots of products fail this way. It’s hard
to do.

There are a bunch of ways to abuse random
number generators,
not just the obvious
ones of looking at
them and seeing that
they’re weaker than
you think. You can
learn the state at a
time and predict that
state at a future time.
You can control some
of the inputs. I once
looked at an old ver-
sion of a crypto-
graphic token, which
had a good random
number generator—
except that when you
plugged it into a certain reader you could ma-
nipulate it so the input stopped coming in and
it would tail down to a known state. An inter-
esting way to break a system. We fixed that
one.

There aren’t any good standards for random
number generators. There are some guidelines,
but they are not strong against real-world at-
tacks. And the guidelines that exist only talk
about generating the random numbers—hard-
ware noise sources and the like—and not about
how to use them. The attacks we look at don’t
break the random number generators at the
analog source, but the method of using the ran-
dom numbers after they turn into bits. So yes,
there’s that clever hack where they threw a
camera at a bunch of lava lamps. That makes
really good random input, but our analysis
starts after that, after the analog lava lamps are
converted into a digital stream and are then
used by the application.

To help alleviate this problem, I released a
public domain random number generator called

Yarrow, which is secure as far as I know
against all the attacks I know of. And compa-
nies are starting to use it. It’s free, the source
code’s available. I urge companies to use it.
Hopefully, this will improve the general state of
random numbers in the world, which can only
help.

Cult of Mathematics
You see this problem
with a lot of vendors.
There’s a one time
pad, therefore it’s se-
cure. There’s a proof,
therefore it’s secure. I
tend to be very frus-
trated at these sorts of
things because as a
mathematician I wish it
were true. Mathemat-
ics is a science, it’s not
a measure of security.
Another example of

this is the cult of key length. It has a 500-bit
key, therefore it’s better than a 300-bit key. We
used 5,000-bit RSA, therefore we’re better than
2,000-bit RSA. It’s not actually true, or at least
it’s not true in any meaningful sense.

I guess it was last year that IBM released the
system that was going to take over cryptogra-
phy and make us all safe. Well, we haven’t
seen it yet. They had a protocol, there was a
security proof, but all it means is that, given
some certain assumptions, the protocol is se-
cure against certain attacks. Lots of systems
have been broken despite proofs. There are
two parts to a proof—there are the assump-
tions, then the logical steps of the proof. If I
am going to try to analyze a system that has a
proof and the proof is valid, I’m not going to
attack the logic, that’s kind of silly. I’m going
to attack the assumptions. We see this again
and again and again. Remember the attack
against PKCS#1 from Bell Labs—a really nice
attack that attacked the assumptions of how
you pack bits into a digital signature? There are

Computer Security Journal • Volume XV, Number 4, 1999 5

C R Y P T O G R A P H Y

There are many ways to abuse
RNGs: learn the state, extend a
state compromise forward or
backward in time, learn or con-
trol inputs to reduce output en-
tropy. Poor RNGs are probably
the most common security
problem in products today.
Counterpane Systems has re-
leased Yarrow, a public domain
RNG. Use it.

lots of one time pad systems that I’ve broken.
You don’t break the one time pad, you break
the way it’s used. You can go to the NSA Web
site and read about the Venona project, where
they broke one time pads from the Soviet
Union. They were one time pads, they were
just used improperly.

Mathematics works on bits, but security in-
volves people. I’ll often say to potential clients,
“If you give me bits, I can
secure them. It’s that
human–bit interface that is
going to cause you hard-
ship. That’s where things
are going to break.”

Insecure Software,
Computers and Networks

Insecure software, comput-
ers, networks—I sort of
lump them all together.
You can look at all the CERT advisories. You’ll
see the same mistakes being made over and
over again. The moral is that a buzzword-com-
pliant product isn’t enough. Just because the
product literature reads, “We use triple DES, we
use RSA,” doesn’t mean it’s secure. These algo-
rithms might be necessary for security, but
they’re certainly not sufficient.

It’s really difficult to write secure code. That’s
something we’ve learned. We’re starting to
build tools to help us. There are tools that au-
tomatically check for overflow bugs or other se-
curity holes. Unfortunately, they’re not widely
used. They’re actually not easy to use, either.

There are user interface errors. I’ve seen
products in which the window where you enter
your key will break the product because the
window helpfully saves the last thing entered
somewhere. That’s a really interesting break
because it happens nowhere near the security
portion of the code. Again, the moral is you
have to look at everything. Pieces of code far
removed from the security can affect security.

Similarly, it’s impossible to build a secure ap-
plication on top of an insecure operating sys-

tem. You can make your buildings secure, but
if the foundation that you’ve built it on is wob-
bly, it’s not going to do you any good.

Let’s assume that PGP is a perfect product,
and there’s no way to break it. You still can,
on the computer it’s running from, install a
stealth keyboard recorder, which will capture
keystrokes and capture your passphrase. It has
nothing to do with PGP, but will break you

completely.
You can install a
Trojan horse that
might act like
PGP, but actually
ships copies of
the keys some-
where. Source
code is available,
you can write
that kind of pro-
gram. I’ve seen
it done in acade-
mic demonstra-

tions. You can install a virus that does the
same thing.

PGP could be perfect, but there will still be
ways in.

Similarly, an insecure network can undermine
the security of a computer it’s attached to. Win-
dows NT has C2 security only if it’s standalone.
Attach it to a network and suddenly vulnerabili-
ties go up.

This the chain of security. Often the weak
links are the software, computers, and net-
works. And they’re links you might not have
any control over. Things you don’t know
about, just because you’re attached to a net-
work, can come and attack you and cause pro-
found effects.

Failures of Secure Perimeters
Another thing you see a lot in products is the
notion that there is some tamperproof element
in the system that attackers can’t get at. For ex-
ample, we see this in smart cards, we see this
in secure computers sitting in safes. These are

6 Computer Security Journal • Volume XV, Number 4, 1999

C R Y P T O G R A P H Y

Proofs of security only works
within the model of the
security proof. For example,
the attack on PKCS #1 went
outside the mathematical
model of RSA to break
certain implementation.
Mathematics works on bits;
security involves people.

Computer Security Journal • Volume XV, Number 4, 1999 7

C R Y P T O G R A P H Y

all examples of secure perimeters. It’s kind of a
neat idea. And if it works, there’s a lot we as
security professionals can do with it. You can
sort of think of a smart card as a branch office
of the bank living in your wallet. It’s a trusted
agent of the bank that’s sitting in your wallet
constantly managing your balance. Think of an
electronic cash card, or the door key card for
your hotel room—these are smart cards. These
devices work as long as
the secure perimeter
works.

But the unfortunate
reality is that secure
perimeters are really
hard to do. There’s no
such thing as tamper-
proof hardware. If you
speak to people who
work in the industry, in
tamperproofing, they’ll
tell you it can’t be done.

There’s a bar; and you
can raise the bar. You can make it cost a good
amount of money to fake the tamperproof seal
on a bottle of Bayer aspirin. But you can’t
make it impossible. And a lot of the attacks
we’ve seen on smart cards in the past couple of
years—for example, the side channel attacks
done by myself and Paul Kocher of Cryp-
tograply Research Inc., the reverse engineering
attacks done by Ross Anderson, and Marcus
Kuhn in their lab at Cambridge University in
the U.K.; the transient fault attacks by Biham
and Shamir in Israel and folks at Bell Corp.
There are lots of ways into this particular se-
cure perimeter. It doesn’t actually work as a se-
cure perimeter. A lot of companies tend to rely
on it anyway. I prefer, in designs, to use secure
perimeters but not to rely on them. My moral
is any system where the device is owned by
one person and the secrets within the device
are owned by another is a fundamentally
flawed system.

A great analogy is a slot machine. A slot ma-
chine on a casino floor is a secure perimeter. If
you can get into that slot machine you can
make a lot of money. But that slot machine is

sitting on a casino floor and there are guards
and there are cameras and there are lights and
there are people and if you go near that slot
machine with a drill you’re going to be carted
off to jail. But if the casino said to you, “Here,
take this slot machine, take it home, take it
home for a month. Play it, bring it back and
we’ll pay whatever’s on the pay line.” That’s a
much riskier proposition. And that’s basically

what happens with
smart cards: “Here’s
a smart card, take it
home, take it to
your lab, do what
you want and we’ll
honor whatever bal-
ance shows up on it
next month.” It’s
dangerous.

New Vulnerabilities
Introduced by Key

Escrow
Another danger I like to talk about is key es-
crow. It’s an interesting issue and there are
some real good business cases made in various
directions.

By key escrow, I mean key escrow, data es-
crow, trusted third-party encryption, data recov-
ery, key recovery, whatever the political word
for it is today. It’s all the same threat model.
And I’m trying to stay at that level.

Data backup is vital. Anybody who’s worked
in computers for more than a month knows
that. You need to back up your data. And
when you encrypt your data, the value of the
key equals the value of the data. In a very
basic sense, cryptography takes large secrets
and replaces them with small secrets. So you
have this huge file, or this e-mail, or whatever,
that you need to keep secure. You encrypt it
with this small key and now you need to keep
that small key secure.

Now that data has a value, and since you
need the key to get at the data, that key has
that same value. There are a lot of reasons
why you’re going to want to back up encryp-

Any system where the device
is owned by one person
and the secrets within the
device are owned by another
is an insecure system.
Systems should use
tamper-resistance as a barrier
to entry, not as an absolute
security measure.

8 Computer Security Journal • Volume XIV Number 4, 1999

tion keys used to encrypt stored data because
they have tremendous value.

You don’t want to lose your accounts receiv-
able database when your CFO gets run over by
a bus. That would be bad for your business.
On the other hand, data in transit has ab-
solutely no value because you can always ask
for it again. I didn’t receive the mail, send it
again. I’m talking on the phone, we get discon-
nected, you call back.
Data in transit has no
value; therefore, there
is no reason to back
up keys used to en-
crypt data in transit.

So that’s the busi-
ness case. The gov-
ernment case is
separate. And the
government case is
also a lot more rigor-
ous than the average
business case.

Corporate data
backup is based on
corporate data require-
ments. You don’t actually need 24-hour access,
surreptitious access or real-time access. When
you lose a file, you call the computer center
and say, “I erased this file," and within an hour
or two or a little bit more, you get the file back.
It happens rarely, that’s probably good enough.

Law enforcement requirements make it much
harder for a corporation to do this well.

Adding backups to a key escrow system will
make whatever security you have worse. They
reduce the security.

Have you ever used a STU III or a similar se-
cure phone? It’s kind of a neat idea. It uses a
public key. You pick up the phone, you call
somebody. The two of you negotiate a key,
and when you hang up the key disappears. So
that key only exists for the lifetime of a call. If
the enemy overran your company and confis-
cated all your equipment, they could never re-
cover the key used for that phone call because
the key has disappeared. It’s created at the in-
ception of the call and it’s destroyed at the

completion of the call.
That’s a really good security property. We

call that perfect forward secrecy. And we like
to see that in systems.

A key escrow database destroys that property.
Suddenly, there’s a copy of the key that exists
after the call is completed, and might exist for a
year or two. And might be managed by mini-
mum wage clerks typing in requests for keys

from beleaguered FBI
employees. So adding
a key escrow system
grafts this enormous
infrastructure on what
was a very simple sys-
tem.
So there are three
problems: losing per-
fect forward secrecy,
turning what was sim-
ple into complexity,
and then adding a
very large target.
What was once a dis-
tributed system of var-
ious telephones being

used for different security calls has now been
encapsulated in this huge target that has the
keys for all of them—a much bigger risk. And
to me, while I am here explaining why rela-
tively simple systems are hard to do, I don’t see
that it is possible to build the large key escrow
infrastructure that seems to be mandated, re-
quired, or requested. The NSA’s own report
says just about the same thing.

The politics of this is changing very rapidly.
The U.S. seems to be alone in its demand for
key escrow. France has reversed, Germany has
reversed, England has reversed. We seem to
be trying to do better. And hopefully, we will
do even better.

Reliance on User-Remembered Secrets
This is a tough problem to solve, and it’s a big
one. In a lot of systems, security is based on
the user-remembered secret.

C R Y P T O G R A P H Y

Law enforcement access re-
quirements fly in the face of se-
curity requirements solved by
cryptography. The massive scale
of any key-escrow infrastruc-
ture is beyond the ability of the
current security community.
The NSA’s own analysis con-
cluded that key escrow is too
risky, and creates more security
problems than it solves.

PGP has excellent algorithms and protocols,
but all the security hinges on the passphrase
that the user types in to unlock his private key.

There are PGP cracker tools available that try
to brute-force this passphrase. If you chose a
lousy one, it can be broken.

The security of your computer network is
based on the password. Most exploits into
computer systems are based on grabbing that
encrypted password
file and trying to
brute-force bad pass-
words.

Even worse, a lot of
systems have the char-
acteristic of only being
as secure as the weak-
est password. Now
this is really annoying.
You might have a
shared computer sys-
tem with a thousand
users. Your system
could be as secure as
the worst password
among all the ones that those thousand users
pick.

If I were to steal the password file and run
L0phtcrack on it, I would get the one password
that’s “dog” or “cat.” And it’s actually even
worse than that. You can run dictionaries that
are millions of common names long. This is
hard because users cannot remember good se-
crets. We really can’t rely on users to remem-
ber good secrets.

English has about 1.3 bits of entropy per
character. So if you were to tell the user to
pick a 30-character English passphrase, that’s
about the same as a 40-bit key. There is upper-
case, lowercase, alphanumerics, non-English
characters, and punctuation. Generously,
there’s 4 bits of entropy per character. So a 12-
character password is about 40 bits, a little bit
more secure than a 40-bit key.

Now with the advances we’ve been seeing in
brute force technology, 56-bit keys are within
easy reach of anybody with a quarter million
dollars to spend on a machine. This is bad.

As security professionals, we can’t expect our
users to type in paragraphs when they want to
access their computer. We’re going to get some
help from the biometric community. This is a
place where they can help us. There is a lot of
stuff biometrics can’t do; this is something it ac-
tually can.

Reliance on Intelligent Users
Similarly, a lot of sys-
tems rely on the intel-
ligence of users, and
this is also problem-
atic. There’s been a
battle for the past 20
years, because secu-
rity would like to
push security up
higher in the applica-
tion stack, closer to
the user, but the users
don’t want to see it;
they want to push se-
curity down, way

down into the network layer and the transport.
Just as users will take a chair and prop open

a fire door in order to make their lives easier,
they’ll bypass security measures to make their
lives easier. “Here, you can borrow my pass-
word. I’m going out for the next day.”

You’re surfing the Web and you see a button
on the Web site saying, “Click here to see the
dancing pigs.” And you click on the Web site
and then this window comes up saying, “Warn-
ing: this is an untrusted Java applet. It might
damage your system. Do you want to con-
tinue? Yes/No.”

Well, the average computer user is going to
pick dancing pigs over security any day. And
we can’t expect them not to.

I use Netscape and I can set the security level
low, medium, or high. For most people, that’s
setting the annoyance level. “How many an-
noying dialog boxes do I have to see?”

You can’t trust users to make these decisions.
You can’t trust users to verify certificates. SSL
only works if, after you establish a connection,

Computer Security Journal • Volume XV, Number 4, 1999 9

C R Y P T O G R A P H Y

Many systems rely on
user-generated and
user-remembered secrets
for security (for example, PGP).
Many password-protected
systems have the characteristic
of being only as secure as the
weakest password.
Users cannot remember
good secrets.

you go and verify the certificate that you re-
ceived. Pretty much nobody ever does that. I
mean, I never do it. You can’t expect users to
follow security policies and procedures. You
really can’t, we know this from the real world.

As I said before, cryptography works in the
digital world. But it’s very hard to manage that
transition from the people into the digital world.
And that’s where we
see a lot of breaks—
social engineering
breaks, user interface
breaks.

What you see isn’t
necessarily what you
get. If you type an e-
mail message and you
push the encrypt but-
ton, you have no clue
what happened. You
assume it encrypted it
if you click the button.
What did you just
sign? Did you sign
what was on the
screen? Well, you think you did, you hope you
did. You have no idea. If it’s a malicious com-
puter program, it could have made you sign
something else.

This brings us into the notion of the authenti-
cation infrastructure, the public infrastructure,
which as it’s built today has a lot of weaknesses.

First, it doesn’t actually encapsulate trust.
Trust is a very complex social phenomenon.
Trusting to ride in someone’s car, to lend them
five dollars, let them baby-sit your children, to
get married to them, to go into business with
them—there’s a lot of different definitions of
trust. We really can’t encapsulate those in a sin-
gle certificate. And that’s really what PKI ven-
dors are trying to do.

There’s no single global namespace in this
world. There’s no single level of assurance.
Open up your wallet and you’ll see any number
of analogue certificates. You’ll see a driver’s li-
cense, you’ll see credit cards, you’ll see airline
frequent flyer cards, you’ll see library cards,
Starbucks frequent coffee drinker cards, etc.

There’s no reason why you can’t have just one
certificate in your wallet and have it be used for
all those applications. There’s no reason why
the credit card company can’t use your driver’s
license. There’s no reason why the airline can’t
use your passport ID number. These are all just
keys into databases. But that has never hap-
pened and it never will. Every entity needs to

manage, issue, use,
and revoke their own
certificates based on
their own rules.
That same thing is
going to happen in the
digital world. You’re
not going to have this
single monolithic cer-
tificate that’ll be used
for everything. Busi-
nesses won’t stand for
it, and also it’s less se-
cure. A big monolithic
security certificate
manufacturer is a big
target.

I remember talking with Marcus Ranum, and
we decided that the VeriSign route key could
be stolen for 50 million dollars, which is about
how much it would cost to make a leveraged
buyout of the company. There could be a situ-
ation where it’s worth it.

Similarly, certificates issued by these trusted
third parties don’t make any sense without
some liability model attached. If you’re going
to use VeriSign certs, what’s your recourse if
VeriSign has a problem? You need something.
And similarly in the real world, I said this be-
fore, key verification is not done. This is the
hidden secret of PKI. There’s no way of check-
ing revocation, and people don’t try to check
anyway. Revocation is not being done.

Authentication is not the same thing as autho-
rization. This is important! Imagine you get an
e-mail that’s a purchase order for a million dol-
lars of computer equipment. You can go
through all the steps of verifying the cryptogra-
phy, verifying the signature, verifying the cert
that signed, the public key that signed, the pur-

10 Computer Security Journal • Volume XV, Number 4, 1999

C R Y P T O G R A P H Y

Users cannot be relied upon to
follow security procedures.
Users will work around annoy-
ing security measures. Users
will give away secrets (for ex-
ample, through “social engi-
neering”). Cryptography works
in the digital world; it is very
difficult to manage the transi-
tion from people into the digi-
tal world and back again.

Computer Security Journal • Volume XV, Number 4, 1999 11

chase order, verifying that it hasn’t been re-
voked, verifying that it has a trusted path from
them to you. It verifies that the message is
valid. But you’d still have no answer to the
real question, which is “Should I accept this
purchase order?” Not “Is this key valid?” but “Is
this key authorized to do what it’s trying to do?”
And very few systems address this harder and
far more interesting problem.

What is the key al-
lowed to do, what is
the authorization asso-
ciated with this key?
Not what is the authen-
tication. Authentication
is actually the easy part.

Reliance on
Global Secrets

Many systems—gener-
ally not Internet sys-
tems, usually
proprietary systems like
cell phone systems or smart card systems—are
created with global secrets. There is one key. If
you break the key, you’ve compromised the
system. That’s bad. The security is only as
strong as the weakest instantiation of that key.
They’re only protected to the degree of the least
trusted person who has access to that secret.

Similarly, when a compromise occurs (this is
not “if,” this is when), it can be very hard to re-
cover. If the same global secret is used in all of
the fare collection terminals throughout a par-
ticular subway system, or in every cell phone,
or in every DVD player, or in every European
satellite TV decoder, when it’s compromised it’s
very hard to recover. This is not a very good
design feature.

Version Rollback Attacks
Another bad design feature we see a lot are
systems that are backwards compatible with in-
secure systems. I call these version rollback at-

tacks. You invent version 1.0 of your system,
it’s broken. You release version 2.0 but it’s
compatible with 1.0.

In a lot of these systems, you can build attacks
where you convince the version 2.0 systems to
default to the 1.0 protocol. And then you break
it that way. This can be hard, because on the
Internet, you want to be backwards compatible
with everything. But security, by it’s nature,

shouldn’t be back-
wards compatible.

Paul Kocher, in de-
veloping SSL, spent a
lot of time making
sure SSL 3 was back-
wards compatible just
enough to be func-
tional, but not
enough to allow this
version rollback at-
tack. It’s a very hard
problem to solve and
a lot of systems don’t
solve it.

"Below the Radar” Attacks
Automating a system helps both the defender
and the attacker. Suddenly, attacks that were
too cumbersome in the real world can be auto-
mated to a degree that they become profitable.
Take for example, the great story (which I’m
pretty sure is apocryphal) of stealing the frac-
tions of pennies from interest-bearing accounts.
That’s an attack that would have made no
sense in the real world. But in a computer
world where you can automate it, you can ac-
tually make a lot of money.

Another such attack would be e-mailing a
million people with stock predictions and then
having them randomly go up, go down, and
paring down your database until you get a
string much smaller that has a string of ten suc-
cesses. That’s another attack that’s much more
likely because you can automate it.

In the mid-1970s, we gave or sold the Shah of
Iran our old currency printing presses. The Aya-

C R Y P T O G R A P H Y

Key revocation is very difficult,
and it is currently not being
done securely. When you get a
key over the Internet, it is vital
to verify that the key has not
been revoked or stolen.
Authentication is not the same
thing as authorization. Authen-
tication is automatic; authoriza-
tion requires thought.

12 Computer Security Journal • Volume XV, Number 4, 1999

tollah took them over when he seized power. He
realized quickly that it’s much more profitable to
print American dollars than it was to print the
local currency, and they’ve been doing that ever
since. And that’s why we have new bills. That’s
an example of an interesting attack because it
shows the different characteristics of an attack in
the computer world
versus the real world.
In the real world, this
was a very devastating
attack.

When the Secret Ser-
vice went to the Trea-
sury people and said,
“Look, these bills are
coming in, we can’t
stop them, what
should we do?” The
Treasury people used
their calculators and
concluded, “Well they
have this many print-
ing presses, printing
this many bills per
hour, this many bills
per year but it doesn’t
affect the money supply. Don’t worry about it.
We’ll fix it eventually.” It’s interesting. What that
says is that this attack, as devastating as it is, only
has a maximum amount of damage it can do.

Now on the Internet, if you can imagine being
able to mint electronic cash in a similar way, you
can post that piece of software on a Web site; a
thousand people have it in an hour, a million
people have it in a week. The amount of damage
it can do is would be awesome. It could drop a
currency. That’s interesting. That means the
characteristics of propagation, because of the au-
tomation, are much different than they are in the
real world.

I expect some pretty interesting exploits be-
cause people don’t understand this. The moral is
only the first attacker needed skill. If he auto-
mates the attack, he can send it out and script kid-
dies can run it.

Imagine someone coming up with a Web site
that said, “Click here to bring down the Inter-

net.” Certainly, it is possible. Thankfully, we
haven’t seen it yet. But someone with skill
doesn’t necessarily have ethics.

Poor Failure Modes
Systems tend to break around the edges. Sys-

tems almost never
break by hammering
them in the middle;
they break around the
edges. One of the
problems is that sys-
tems don’t fail well.
They default to inse-
cure.

If you’re buying
something with a
credit card and the
clerk runs it through
the VeriPhone termi-
nal, there’s online
credit verification to
make sure you’re not
using a stolen card.
And if it doesn’t work,
let’s say you’ve

scratched out the magnetic stripe, then the mer-
chant is going to run it manually. So the secu-
rity measure fails just at the point you want it.

If someone wants to get into a network, one
of the easier ways is to crash their firewall. It’s
much easier to do denial-of-service attacks than
to break in. But if you crash it two dozen times
in as many hours, eventually someone’s going
to complain and it’ll probably go away while
they try to fix it.

In the real world, we tend not to have the dis-
cipline not to communicate if the communica-
tion security isn’t in place. This is a real
problem I don’t have a good solution for.

Poor Compromise Recovery
We don’t have good procedures for compro-
mised recovery. A lot of the products deal with
prevention, but don’t handle recovery very well.

To me, recovery is even more important. Be-

C R Y P T O G R A P H Y

Many systems have a “default
to insecure” mode of opera-
tion. For example, crash a fire-
wall. Wait until someone gets
frustrated and shuts it down.
Waltz right in. Disrupt the com-
munications line that verifies a
Visa card, and a merchant will
just accept the transaction.
Only the military has the
discipline not to communicate
if the security measures are
not in place (and they’re by no
means perfect).

cause there are going to be problems; people
are going to get in, you’re going to lose secu-
rity, you’re going to lose the root key to your
banking protocol. How do you recover? What
do you do now? Yes, it will be expensive, yes,
it will be embarrassing. But you don’t want to
close up shop and go home.

Improper
Risk Management

It’s vital to understand
what it is we’re pro-
tecting. Who are the
attackers are? Are they
criminals? Are they
bored grad students?
What is the value of
the data? Is it very
valuable, is it cheap?
How long does it have
to be secure?

In the brokerage
world, today’s secrets
are tomorrow’s head-
lines. Stock trading
data has to be kept secret until the trade is exe-
cuted. Some data has to be kept secret for
years, some for longer. You need to under-
stand who the attackers are, what the value of
the data is, what the jurisdiction is. The Inter-
net is very international and this creates juris-
dictional problems. We need to balance all of
these risks.

Poor Forensics
Forensics is a big deal. Preventing crime is a
lot harder than detecting crime. In our society,
we actually don’t prevent crime. We detect
crime after the fact, and we collect a body of
evidence that can be used to convince a third
party of the guilty party’s guilt. We punish the
guilty party and then through that punishment
there is some back process towards prevention.
We need more mechanisms for evidence gath-
ering, and trusted evidence gathering, in com-
puter systems.

Conclusion
The problem with bad cryptography is it looks
exactly the same as good cryptography. I could
hold up two products that use the same algo-
rithms, the same protocols, the same buzzwords.
One is secure and one isn’t—and you can’t tell
the difference.

In our society, we
tend to use the gov-
ernment as a regula-
tory body when the
consumers can’t make
a good product deci-
sion—for drugs, for
airline safety, for
foods. This wouldn’t
actually work very
well for cryptography,
because the Internet is
moving much too fast,
and because the NSA’s
dual role isn’t terribly
trusted.

The only thing we
can do is have expert
testing. For example,

in the absence of the FDA, if you were a smart
drug user you might engage an expert lab to
answer the question, “Is this a real drug or is
this snake oil?”

On the other hand, we don’t need to be per-
fect. No security system on this planet is per-
fect. I like to use the system of notary publics
in this country “as an example”. It’s a com-
pletely broken security protocol, if you look at
it. But it’s good enough for a lot of things. “A
secure computer is one you’ve insured.” If you
put a box around your risk and you’ve man-
aged it, you’ve done a good job. We don’t
need perfect security; what we need is good
enough security.

Finally, there are the limits of the technology.
The overwhelming message of this talk is that
cryptography is a mathematical tool. While it’s
essential for security, it doesn’t automatically
ensure security. It is not some magic security
dust that you can sprinkle over your computer.
The social problems are a lot harder than the

Computer Security Journal • Volume XIV, Number 4, 1999 13

C R Y P T O G R A P H Y

The problem with bad
cryptography is that it looks
just like good cryptography.
Almost all security products on
the market today are insecure.
Expert security testing is the
only way to tell a secure
product from an insecure one.
If you think cryptography can
solve your problem, then you
don’t understand your problem
and you don’t understand
cryptography.

mathematics. It’s much harder to build a se-
cure system with people in it than it is to build
a secure system with just math in it. That’s the
challenge we really have.

Good cryptography is like putting an enor-
mous stake in the ground and hoping that the
enemy runs right into it. You’re not going to at-
tack a system by running right into the
strongest part. You can attack it by going
around that strength, by going after the weak
part—i.e., the people, the failure modes, the
automation, the engineering, the software, the
networks, etc.

I’d like you to go out into the world a little
more skeptical and ask a lot of hard questions.

Bruce Schneier is president of Counterpane Sys-
tems. He is the author of Applied Cryptography
(John Wiley & Sons, 1994 & 1996), the seminal
work in its field. Now in its second edition, Ap-
plied Cryptography has sold over 90,000 copies
worldwide and has been translated into four
languages. His papers have appeared at inter-

national conferences, and he has written
dozens of articles on cryptography for major
magazines. He is a contributing editor to Dr.
Dobbs Journal where he edited the “Algorithms
Alley” column, and has been a contributing ed-
itor to Computer and Communications Security
Reviews. He designed the popular Blowfish en-
cryption algorithm, still unbroken after years of
cryptanalysis, as wall as Twofish, currently a
candidate for the government's Advanced En-
cryption Standard.

Schneier served on the Board of Directors
of the International Association for Cryptologic
Research, is a member of the Advisory Board
for the Electronic Privacy Information Center,
and is on the Board of Directors of the Voter's
Telcom Watch. Schneier has an M.S. in Com-
puter Science from American University and a
B.S. in Physics from the University of Rochester.
He is a frequent writer and lecturer on cryptog-
raphy, computer security, and privacy.
See http://www.counterpane.com/schneier.html
for more information.

14 Computer Security Journal • Volume XIV Number 4, 1999

C R Y P T O G R A P H Y

Computer Security Journal • Volume XIV, Number 4, 1998 15

I S S U E S A N D T R E N D S

