
CIS 422/522 Spring 2005 1

Midterm Review

Overview

CIS 422/522 Spring 2005 2

• The “software crisis”
• What is “software engineering” - course view
• The software life cycle – controlling the process

– Faking it
– Common process models addressing different risks

• Project planning and management – controlling the
resources

• Documentation – communicating decisions
– Product specification
– SRS

The “Software Crisis”

CIS 422/522 Spring 2005 3

• Have been in “crisis” since the advent of “big”
software (roughly 1965)

• What we want for software development
– Low risk, predictability
– Lower costs and proportionate costs
– Faster turnaround

• What we have:
– High risk, high failure rate
– Poor delivered quality
– Unpredictable schedule, cost, effort

• Characterized by lack of control (inability plan the
work, work the plan)

Symptoms of the Crisis

CIS 422/522 Spring 2005 4

• Two of every eight large software project is
cancelled

• Average projects overshoot schedule by 50%,
large project do much worse

• 75% of large systems are failures in the
sense that they do not operate as intended

• 60% of them fail to deliver a single working
line of code

Large is Different

CIS 422/522 Spring 2005 5

• Large system development quantitatively and
qualitatively distinct from small development

• Small system development is driven by technical issues
(I.e., programming)

• Large system development is dominated by
organizational issues
– Managing complexity, communication, coordination, etc.
– Projects fail when these issues are inadequately addressed

• Lesson #1: programming ≠ software engineering
– Techniques that work for small systems fail utterly when scaled

up
– Programming alone won’t get you through real developments or

even this course

40-20-40 Rule

CIS 422/522 Spring 2005 6

Requirements &
Design

Coding

Verification and
Validation

Global distribution of effort

CIS 422/522 Spring 2005 7

• Rule of thumb: 40-20-40 distribution of effort
in development

• But: development is less than half the story
• For real systems maintenance alone

consumes 50-75% of total effort
– Coding < 10%

Life-Cycle View

CIS 422/522 Spring 2005 8

Requirements &
Design
Coding

Verification and
Validation
Maintenance

Life-Cycle View

CIS 422/522 Spring 2005 9

Requirements &
Design
Coding

Verification and
Validation
Maintenance

Must Consider Whole Cycle

CIS 422/522 Spring 2005 10

• Architecture subsequently influences business
decisions and goals

•Determines which capabilities can be provided
quickly and cheaply

Customer
Value

Analysis

Company
Strategic

Goals

Business Goals
System Develop.

Hardware
Software

Other Areas
Marketing
Cust. Service

Product Strategy
Economic Evaluation
Development Strategy
Marketing Strategy
Prioritization

Product
Requirements

Capabilities
Qualities
Reusability System

Architecture
Tradeoffs of
quality goals

System
Implementation

Etc.

Architectural
Capabilities and

Constraints

View of SE in this Course

CIS 422/522 Spring 2005 11

• The purpose of software engineering is to
gain and maintain intellectual and managerial
control over the products and processes of
software development.
– “Intellectual control” means that we are able

make rational choices based on an understanding
of the downstream effects of those choices (e.g.,
on system properties).

– Managerial control means we control
development resources (budget, schedule,
personnel).

Meaning of “Control”

CIS 422/522 Spring 2005 12

• Both are necessary for success!
• Intellectual control implies

– We understand what we are trying to achieve
– Can distinguish good choices from bad
– We can reliably and predictably achieve what we want

• Managerial control implies
– We make accurate estimations
– We deliver on schedule and within budget

• Assertion: Managerial control is not really possible
without intellectual control

Course Approach

CIS 422/522 Spring 2005 13

• Will learn methods for acquiring and
maintaining control of software projects

• Managerial control (most of focus to date)
– Planning and controlling development
– Process models addressing development issues

(e.g. risk, time to market)
– People management and team organization

• Intellectual control
– Methods for software requirements, architecture,

design, test
– Notations, verification & validation

CIS 422/522 Spring 2005 14

The Software Lifecycle

Introduction

Definition

CIS 422/522 Spring 2005 15

• Software Life Cycle: evolution of a software
development effort from concept to retirement

• Life Cycle Model: Abstract representation of a
software life cycle as a sequence of 1)
activities or phases and 2) products (usually
graphic)

• Software Process (process model):
institutionalized version of a life cycle model.
Usually intended to provide guidance to
developers.

A “Waterfall” Model

CIS 422/522 Spring 2005 16

Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Architecture

Issues with Life Cycle Models

CIS 422/522 Spring 2005 17

• Application of “divide-and-conquer” to
software processes and products
– Goal: identify distinct and relatively independent

phases and products
– Can then address each separately

• Intended use
– Provide guidance to developers in what to

produce and when to produce it
– Provide a basis for planning and assessing

development progress
• Never an accurate representation of what

really goes on.

It Pays to “Fake it”

CIS 422/522 Spring 2005 18

• Assertion: Design is an inherently “irrational” process
• Thesis: It is nonetheless useful to “fake” a rational

design process
– Follow the ideal process as closely as possible
– Write the documentation and other work products as is we

had followed the ideal
• Rationale

– Idealized process can provide guidance
– Helps come closer to the ideal (emulation)
– Helps standardize the process (provide a common view of

how to proceed and what to produce)
– Provides a yardstick for assessing progress
– Provides better products (e.g. final draft not first)

Contents of a Process Specification

CIS 422/522 Spring 2005 19

• Details depend on the purpose of the
specification

• In general terms [Parnas &Clements]
– What product we should work on next

• Equivalently – what decision(s) must we make next

– What kind of person should do the work
– What information is needed to do the work
– When is the work finished?
– What criteria the work product must satisfy

Process Specification (2)

CIS 422/522 Spring 2005 20

• One of the project lessons-learned is that a
vague description is inadequate
– “Build a module to do XXX.” vs. “Build a module

that correctly passes the following test set.”
– Unless answers to these questions are specific

these questions cannot be answered satisfactorily
– E.g., carefully defined interfaces, clear user

documents, testable requirements, test cases

Required Document Types

CIS 422/522 Spring 2005 21

• Need two types of documents
• Management documents

– Project plan, schedule, WBS, etc.
– Tools for managerial control: i.e., control of

resources
• Development documents

– ConOps, Requirements (SRS), Architecture, Detail
design, etc.

– Tools for intellectual control: i.e., control of product
produced (functionality, properties)

CIS 422/522 Spring 2005 22

Common Process Models

Prototyping
Iterative

RAD or Xtreme
Spiral

“Appropriate” Control

CIS 422/522 Spring 2005 23

• Goal: control appropriate to the product and
development context

• What constitutes “appropriate” control will be vastly
different for different types of developments
– Large vs. small
– New problems vs. old
– Time to market vs. quality
– These are neither independent nor exclusive

• Development approaches vary in their assumptions
about these issues
– Useful to view in terms of which risk area they address
– E.g., RAD vs. Spiral vs. Prototyping

I. Prototyping

CIS 422/522 Spring 2005 24

• Traditionally used to address two distinct risk issues
– Requirements: problem that the user’s don’t know what they

want until they see it
– Technical feasibility: technical unknowns or technical risk in

development

• Two types of prototypes
– Demonstration: a concrete (visible) realization of some user

need. May or may not provide real functionality (e.g., a
mock-up of user interface)

• Answers the question: “Is this what we should build?”
– Engineering: a part of a working system sufficient to

demonstrate the feasibility of meeting some requirement
• Answers the question: “Can we build it using technology T?”

CIS 422/522 Spring 2005 25

Prototyping as a tool for
requirements understanding

reqs engineering

designdesign

implementationimplementation

testingtesting

maintenance

Adapted from van Vliet © 2001 with permission

Prototyping Recommendations

CIS 422/522 Spring 2005 26

• Use prototyping when the requirements are
unclear or there are major technical risk
areas

• Prototyping needs to be planned and
controlled as well
– Tendency to become the system
– Explicit definition of system qualities
– Explicit control of how they will be achieved
– Prototype never defaults to the delivered system

Adapted from van Vliet © 2001 with permission

II. Incremental Development

CIS 422/522 Spring 2005 27

• A software system is delivered in small
increments of increasing capability
– Avoids the Big Bang effect (nothing works until

system integration at the end)
– There’s always a working system

• The steps of the waterfall model may be
employed in each phase (or variations)

• The customer is closely involved in directing
the next steps

Adapted from van Vliet © 2001 with permission

Incremental Development

CIS 422/522 Spring 2005 28

• Requires careful attention to architectural
design (I.e., how the system is decomposed
into components)
– The sequence of increments (useful subsets) must

be planned in advance
– Dependencies between components must be

understood and mapped out
• Avoid circular dependencies
• Make sure capabilities are present when needed for the

next increment

III. RAD: Rapid Application Development

CIS 422/522 Spring 2005 29

• Incremental development with time boxes: fixed time
frames within which activities are done
– Time frame is decided upon first, then one tries to realize as

much as possible within that time frame

• Close customer collaboration
– Joint Requirements Planning (JRD) and
– Joint Application Design (JAD),

• Requirements prioritization through a triage;
• “Xtreme Programming” is a variation on this theme

Adapted from van Vliet © 2001 with permission

RAD: Rapid Application Development

CIS 422/522 Spring 2005 30

• Must be able to sacrifice functionality for
schedule

• Requires, close, rapid communication cycles
between developers and with stakeholders

• Best suited for small team development and
modestly sized projects

IV. Spiral Model

CIS 422/522 Spring 2005 31

• All development models have something in
common: reducing the risks
– in prototyping, getting the right requirements is a

major risk
– in the waterfall model, the schedule is seen as a

risk
• The spiral model subsumes these different

models
– I.e., the model can be used to address any or all of

the risks by continually revisiting any perceived
risk issues.

CIS 422/522 Spring 2005 32

Spiral Process Model (Boehm)

Spiral Model Goals

CIS 422/522 Spring 2005 33

• Response lack of risk analysis and risk
mitigation in “waterfall” process
– Make risk analysis standard part of process
– Address risk issues early and often

• Explicit risk analysis at each phase
• Framework for explicit risk-mitigation

strategies
– E.g., prototyping (what risk/difficulty is

addressed?)
• Explicit Go/No-Go decision points in process

CIS 422/522 Spring 2005 34

How do we Choose a Development
Process?

E.g., for your projects

Goals vs. Risks

CIS 422/522 Spring 2005 35

• Goal: proceed as rationally and systematically as
possible (I.e., in a controlled manner) from a
statement of goals to a design that demonstrably
meets those goals with design and management
constraints
– Understand that any process description is an abstraction
– Always must compensate for deviation from the ideal (e.g.,

by iteration)

• Risk: Anything that might lead to a loss of control is a
project risk
– E.g., won’t meet the schedule, will overspend budget, will fail

to deliver the proper functionality

A Software Engineering Perspective

CIS 422/522 Spring 2005 36

• Choose processes, methods, notations, etc.
to provide an appropriate level of control for
the given product and context
– Sufficient control to achieve results
– No more than necessary to contain cost and effort

• Provides a basis for choosing or evaluating
processes, methods, etc.
– Does it achieve our objectives at reasonable cost?

Project Relevance

CIS 422/522 Spring 2005 37

• Need to agree on kind of control you need to
address most serious risks, and how you will
accomplish that control

• Process model (description) will then help
keep everyone on track
– Basis for planning and scheduling
– Each person knows what to do next
– Basis for tracking progress against schedule

Example

CIS 422/522 Spring 2005 38

• Project 1 assumptions
1. Deadline and resources (time, personnel) are fixed
2. Delivered functionality and quality can vary (though they

affect the grade)
3. Risks:

1. Missing the deadline
2. Technology problems
3. Inadequate requirements

• Process model
– All of these risks can be addressed to some extent by

building some version of the product, then improving on it
as time allows (software & docs.)

– Technology risk requires building/finding software and
trying it (prototyping)

– Most forms of incremental development will address these

CIS 422/522 Spring 2005 39

Project Planning and Management

Methods and Tools for Resource
Control

View of SE in this Course

CIS 422/522 Spring 2005 40

• The purpose of software engineering is to
gain and maintain intellectual and
managerial control over the products and
processes of software development.
1. “Intellectual control” means that we are able

make rational choices based on an
understanding of the downstream effects of those
choices (e.g., on system properties).

2. Managerial control means we control
development resources (budget, schedule,
personnel).

Lessons Learned

CIS 422/522 Spring 2005 41

• Observation 1: Most projects underestimated
technical difficulty hence did not have full
“intellectual control” (the consequences of
technical decisions were not always clear)

• Observation 2: Lack of intellectual control
sometimes disrupted managerial control
– E.g. Failure to fully understand requirements,

inadequate understanding of technology, vague
definition of interfaces

– End up affecting schedule, level of effort, delivered
functionality

Work Breakdown Structure

CIS 422/522 Spring 2005 42

• This is a technique to analyze the content of
work and cost by breaking it down into its
component parts. It is produced by :-
– Identifying the key elements
– Breaking each element down into component

parts
– Continuing to breakdown until manageable work

packages have been identified and allocated to
the appropriate person

• The WBS helps identify distinct tasks for
allocation and scheduling

Work Breakdown Structure

CIS 422/522 Spring 2005 43

Milestone Planning

CIS 422/522 Spring 2005 44

• Milestone planning is used to show the major
steps that are needed to reach the goal on
time

• Milestones typically mark completion of key
deliverables (e.g., completion of WBS task)

• Often associated with management review
points

• E.g., Requirements baseline, project plan
complete, code ready to test

Pert Chart

CIS 422/522 Spring 2005 45

• Network analysis or PERT is used to analyze the
inter-relationships between the tasks identified by the
work breakdown structure and to define the
dependencies of each task

• Helps identify where ordering of tasks may cause
problems because of precedence or resource
constraints
– Where one person cannot do two tasks at the same time
– Where adding a person can allow tasks to be done in

parallel, shortening the project

• Helps control allocation of resources over time

Gantt Charts

CIS 422/522 Spring 2005 46

• Method for visualizing a project schedule
showing
– The set of tasks
– Start and completion times
– Task dependencies
– May include responsibilities

• PERT charts can be reformatted as Gantt
charts

• Control of people and time against tasks

Example Gantt Chart

CIS 422/522 Spring 2005 47
http://www.spottydog.u-net.com/guides/faq/faq.html

Lessons Learned

CIS 422/522 Spring 2005 48

• What does control really mean?
• Can we really get everything under control

then run on autopilot?
• Rather, does control mean a continuous

feedback loop?
1. Define ideal
2. Make a step
3. Measure deviation from idea
4. Correct direction or redefine ideal and

go back to 2.

CIS 422/522 Spring 2005 49

Development Documents

Fallout from Faking It

Product Development Cycle

CIS 422/522 Spring 2005 50

Business Goals
Hardware
Software
Marketing
other

Product Planning
Economic Evaluation
Development Strategy
Marketing Strategy
Prioritization

Requirements
Capabilities
Qualities
Reusability

Architecture
Tradeoffs of
quality goals

Strategic
Plan

ConOps or BRD
Business

Requirements
Definition

SRS
Software

Requirements
Specification

Architecture
Design

Documents

Traceability

Detailed
Design

Internal
Design

Documentation

Code

First two included in
Requirements Phase
(discussed in class)

Requirements Phase Goals

CIS 422/522 Spring 2005 51

What are the goals of the requirements phase?
• Standard definition: “Establish and specify precisely what the

software must do without describing how to do it.”
• Establish what to build be for starting to build it.

– Make the “what decisions” explicitly before starting design
… not implicitly during design.

– Make sure you build the system that’s actually wanted/needed.
– Allow the users a chance to comment before it’s built.

• Specify in terms of an organized reference document - the
Software Requirements Specification (SRS)
– Communicate the results of analysis
– Provide a baseline reference document for developers and QA

Parts of the Requirements Phase

CIS 422/522 Spring 2005 52

• Problem Analysis
– The (“establish” part) also called “problem understanding,

requirements exploration, etc
– Goal is to understand precisely what problem is to be solved
– Includes: Identify exact system purpose, who will use it, the

constraints on acceptable solutions, and possible tradeoffs
among conflicting constraints.

• Requirements Specification
– Goal is to develop a technical specification - the Software

Requirements Specification (SRS)
– SRS specifies exactly what is to be built, captures results of

problem analysis, and characterizes the set of acceptable
solutions to the problem.

Two Kinds of Software Requirements

CIS 422/522 Spring 2005 53

• Concept of Operations: documents user needs and
customer expectations
– Link to organizational goals
– Stated in terms the the users’ / customer’s can understand

• Technical Specifications: a concise and unambiguous
statement of technical parameters for a system that
will satisfy the operational requirements
– Stated in the developers’ terminology
– Covers issues such as performance, interfaces, safety,

security, and reliability

For Your Project

CIS 422/522 Spring 2005 54

• Apply Use Cases (scenarios) to describe the
system’s mission from the user’s point of view
– Answers the questions, “What is the system for?” and “How

will the user use it?”
– Tells a story

• For the “Functional Requirements” be as rigorous as
possible
– Use tables, bullets, or case-by-case behavior description
– Purpose is to answer questions about the requirements

quickly and precisely
• Answers, “What should the system output in this

circumstance?”
• Reference, not a narrative, does not “tell a story”

CIS 422/522 Spring 2005 55

Use Case Contents (Generic)

• Use case identifier
• Summary – summary of use case
• Actors – roles enacting use case
• Scenarios

– Basic scenario – the normal case
– Alternative scenarios – other ways to reach goal
– Exceptions – problem scenarios

• Trigger – what causes the use case to start
• Assumptions
• Preconditions – what must be true before the interaction

can occur?
• Post conditions – what must be true after the interaction

occurs

CIS 422/522 Spring 2005 56

Requirements Difficulties

The Software Requirements Specification
(SRS)

CIS 422/522 Spring 2005 57

“The hardest single part of building a software system is deciding
precisely what to build. No other part of the conceptual work is as
difficult as establishing the detailed technical requirements...No
other part of the work so cripples the resulting system if done
wrong. No other part is as difficult to rectify later.”

F.P. Brooks, “No Silver Bullet: Essence and Accidents of Software
Engineering”

Distribution and Effects of Requirements
Errors

CIS 422/522 Spring 2005 58

0

10

20

30

40

50

requirements
and

functional
analysis

design construction and
system

development test

acceptance
testing and
operation

Development Phase

1. The majority of software errors
are introduced early in software
development.

2. The later that software errors are
detected, the more costly they are
to correct.

1

2

5

10

20

50

100

design unit test,
integration operation

requirements code
debug

acceptance initial
test

Phase in which error detected

Requirements Goal

CIS 422/522 Spring 2005 59

• Standard definition:
“Identify and specify precisely what the software must
do without describing how to do it.”
– Idiomatically: Specify “what” without specifying “how.”

What’s so hard about that?

Overall Goals of Requirements

CIS 422/522 Spring 2005 60

• Only three goals (given the large
development context)
– 1) Understand precisely what is required of the

software.
– 2) Communicate that understanding to all of the

parties involved in the development (stakeholders)
– 3) Control production to ensure the final system

satisfies the requirements
• Problems in requirements result from the

failure to adequately accomplish one of these
goals

• In practice, difficult to accomplish

Essential vs. Accidental

CIS 422/522 Spring 2005 61

• Thesis:
Meeting the requirements phase goals is

essentially difficult
- but not as difficult as we make it!

• Essential difficulties - part of the essence of the
problem

• Accidental difficulties - difficulties introduced or added
by the way we do things

*(not “essential” as in “needed” nor “accidental” as in “unintended”)

Essential Difficulties

CIS 422/522 Spring 2005 62

• Comprehension (understanding)
– People don’t (really) know what they want (… until they see

it)
– Superficial grasp is insufficient

• Communication
– People work (think) best with regular structures, conceptual

coherence, and visualization
– Software’s conceptual structures are complex, arbitrary, and

difficult to visualize
– Requirements specification has many purposes and

audiences

Essential Difficulties (2)

CIS 422/522 Spring 2005 63

• Control (decideability, predictability, manageability)
– Control => ability to plan the work, work to the plan
– Changes, lack of visibility make control difficult

• Inseparable Concerns
– Separation of concerns - ability to divide a problem into

distinct and relatively independent parts
– Many issues in requirements cannot be cleanly separated
– Difficult to apply “divide and conquer”
– Must make tradeoffs

Accidental Difficulties

CIS 422/522 Spring 2005 64

• Written as an afterthought: common practice to write
requirements after the code is done (if at all)
– Inevitably a specification of the code as written
– Designers and coders end up defining requirements

• Confused in purpose
– Authors fail to decide precisely what purposes the SRS will

serve and in what way it will serve them
– Requirements end up mixed with other things
– Fails to do anything well

Accidental Difficulties

CIS 422/522 Spring 2005 65

• Not designed to be useful
– Often little effort is expended on the SRS - and it shows
– Resulting document of limited usefulness

• Lacking essential properties
– Must have certain properties: Completeness,Consistency,

Ease of change, Precision...
– Accidental difficulties lead to document that is redundant,

inconsistent, unreadable, ambiguous, imprecise, inaccurate.

• End up not being useful useful, not used or
maintained

Role of a Disciplined Approach

CIS 422/522 Spring 2005 66

• Meaning of “disciplined”
– Objectives are known in advance

• What’s the document’s purpose?
• Who are in its audience?

– Product is well defined and designed to purpose
– Process is defined, followed, tracked and

managed
• Disciplined approach will address the

accidental difficulties
• Provides a basis for attacking essential

difficulties

Address Accidental Difficulties

CIS 422/522 Spring 2005 67

• Written as an afterthought
– Plan for and budget for the requirements phase and its products
– Specification is carefully written, checked, and maintained

• Confused in purpose
– Document purpose is defined in advance (who will use it and what

for)
– Plan is developed around the objectives

• Not designed to be useful
– Specification document itself is designed to facilitate key activities

• document users (e.g., answer specific questions quickly and easily)
• document producers (e.g., ability to check for properties like

consistency)
– Designed to best satisfy its purpose given schedule and budget

constraints
• Lacking essential properties

– Properties are planned for then built in
– Properties are verified by the best means possible (review,

automated checking, etc.)

CIS 422/522 Spring 2005 68

Questions?

	Midterm Review
	Overview
	The “Software Crisis”
	Symptoms of the Crisis
	Large is Different
	40-20-40 Rule
	Global distribution of effort
	Life-Cycle View
	Life-Cycle View
	Must Consider Whole Cycle
	View of SE in this Course
	Meaning of “Control”
	Course Approach
	The Software Lifecycle
	Definition
	A “Waterfall” Model
	Issues with Life Cycle Models
	It Pays to “Fake it”
	Contents of a Process Specification
	Process Specification (2)
	Required Document Types
	Common Process Models
	“Appropriate” Control
	I. Prototyping
	Prototyping as a tool for requirements understanding
	Prototyping Recommendations
	II. Incremental Development
	Incremental Development
	III. RAD: Rapid Application Development
	RAD: Rapid Application Development
	IV. Spiral Model
	Spiral Process Model (Boehm)
	Spiral Model Goals
	How do we Choose a Development Process?
	Goals vs. Risks
	A Software Engineering Perspective
	Project Relevance
	Example
	Project Planning and Management
	View of SE in this Course
	Lessons Learned
	Work Breakdown Structure
	Work Breakdown Structure
	Milestone Planning
	Pert Chart
	Gantt Charts
	Example Gantt Chart
	Lessons Learned
	Development Documents
	Product Development Cycle
	Requirements Phase Goals
	Parts of the Requirements Phase
	Two Kinds of Software Requirements
	For Your Project
	Use Case Contents (Generic)
	Requirements Difficulties
	
	Distribution and Effects of Requirements Errors
	Requirements Goal
	Overall Goals of Requirements
	Essential vs. Accidental
	Essential Difficulties
	Essential Difficulties (2)
	Accidental Difficulties
	Accidental Difficulties
	Role of a Disciplined Approach
	Address Accidental Difficulties
	Questions?

