
Design Principles
and

Principles of Design

Dr. Stuart Faulk
Computer and Information Science

University of Oregon

CIS 422/522 Spring 2005 1



Overview

• Review of why we design
• The role of design principles
• General Design Principles

– Separation of concerns
– Abstraction
– Rigor and Formality*
– Simplicity*

• More Specific Software Principles
– Modularity

• Information hiding
• Abstraction (again)

– Most solid first

CIS 422/522 Spring 2005 2



System “Design” Implies…

• A Design (n) implies we have:
– Goals – What are we trying to achieve?
– Choices – What design choices can we make?
– Assumptions or Constraints – How are the design choices 

limited?

• To Design (v) implies:
– Processes – What sequence of activities and work products 

are needed to achieve the goals?
– Methods – What technologies, techniques and notations will 

we use?

• Design principles embody goals/assumptions and 
help guide choices

CIS 422/522 Spring 2005 3



What are Principles?

• Principle (n): a comprehensive and 
fundamental rule, doctrine, or assumption

• Design Principles – rules that guide 
developers in making design decisions 
consistent with overall design goals and 
constraints
– Guide processes
– Embodied in methods and techniques (e.g., for 

decompositions)
– Disc: Which principles drive OOD?

CIS 422/522 Spring 2005 4



Key Points

• Principles are associated with particular 
design goals or kinds of goals
– Must understand the relationship between the 

principle and the goal to apply properly
– Principles can overlap or conflict just as goals can

• Principles may exist and/or be applied at 
different levels of specificity depending on the 
problem context
– Separation of concerns – general problem solving 

strategy applicable everywhere
– Transparency – deals with a specific problem of 

abstract machine layers

CIS 422/522 Spring 2005 5



Principles vs. Heuristics
• Heuristic: involving or serving as an aid to 

problem-solving by experimental and 
especially trial-and-error methods 
– AKA: rules of thumb 
– Often method or problems specific version of a 

principle
• Heuristics arise from practice
• Principles arise from the essence of the 

problem
– Can be extrapolated from nature of the problem
– Universally applicable where assumptions hold

CIS 422/522 Spring 2005 6



Principles vs. Heuristics (2)

• Approaches to system decomposition
• Heuristics for choosing objects

– Find the nouns in the problem description
– Identify the “things” that act

• Principles
– Information hiding – encapsulate likely changes
– Abstraction – encapsulate details not directly 

relevant to the problem
• Heuristics are generally method specific and 

weaker (less reliable) but easier to apply

CIS 422/522 Spring 2005 7



Example Heuristics
• Underline the nouns
• Identify causal agents
• Identify coherent services
• Identify real-world items
• Identify physical devices
• Identify essential abstractions
• Identify transactions
• Identify persistent information
• Identify visual elements
• Identify control elements
• Execute scenarios

CIS 422/522 Spring 2005 8



Separation of Concerns

CIS 422/522 Spring 2005 9



Separation of Concerns

• Principle: divide a problem into parts such 
that each part addresses a distinct concern

• Goal: divide a problem parts that can be 
addressed separately

• Assumptions
– A “divide and conquer” strategy
– Parts will be simpler than the whole
– Concerns are relatively independent

CIS 422/522 Spring 2005 10



Typical SE Separations

• Separation in time
– Basis for life cycle models

• Separation of qualities
– Security, performance, reliability

• Separation of problem views
– Data flow vs. calls vs. threading

• Separation of purpose
– Identify what SW must do (requirements) 

separately from how it does it (design)

CIS 422/522 Spring 2005 11



Application

• Very broad applicability if concerns can be 
cleanly separated

• Clean separation typically requires removing 
some conflicting concerns
– Must make certain overall decisions constraining 

the design space
– Efficiency vs. correctness – establish correctness 

then permit only semantic preserving 
transformations to achieve efficiency

• Doing this right requires skill and experience
– The single most misapplied principle is SE

CIS 422/522 Spring 2005 12



Design Applications

• Creating distinct views of a system based on distinct 
concerns
– Esp. for software architecture where each view comprises 

particular set of components, relations, and interfaces
– “Task” (process, thread) view 

• Shows potentially concurrent tasks, task dependencies (e.g. 
precedence, exclusion), and synchronization mechanisms

• Used for scheduling, deadlock detection
– “Calls” view

• Shows procedures, call protocol and parameters, and which 
calls which

• Used for performance (e.g., bottlenecks)

CIS 422/522 Spring 2005 13



Caveats

• Must be able to identify and characterize 
distinct concerns

• Must adequately understand dependencies 
between different concerns

• If done too soon, may miss issues and 
opportunities that span concerns (e.g., 
efficiency, simplicity)

• What makes SoC difficult to apply in software 
design?

CIS 422/522 Spring 2005 14



Difficulties

• Complexity and tightly related concerns make 
SoC difficult to apply

• The most misapplied principle in software 
engineering 
– People (and some methods) act as if strongly 

connected issues were distinct
– Implication: connections that are really there 

cannot be seen 
• Cannot see the side-effects of design decisions
• E.g., Improve performance but compromise security

– Results in loss of control (usefulness of the SE 
definition)

CIS 422/522 Spring 2005 15



Abstraction

CIS 422/522 Spring 2005 16



Abstraction

• General: disassociating from specific 
instances to represent what the instances 
have in common. 
– Abstraction defines a one-to-many relationship 
– E.g., one type, many possible implementations

• Modular decomposition: Interface design 
principle of providing only essential 
information and suppressing unnecessary 
details by exploiting commonality.

CIS 422/522 Spring 2005 17



Examples

• Maps, finite state machines, circuit diagrams
• Abstract data types like stacks (many 

possible implementations)
• Virtual machine interfaces like the Mac or 

Windows desktop (common interface to 
different types of entities including different 
file types and executable programs)

CIS 422/522 Spring 2005 18



Design Applications

• Two primary uses
1) Reduce Complexity

– Goal: manage complexity by reducing the amount 
of information that must be considered at one time

– Approach: Separate information important to the 
problem at hand from that which is not

– Abstraction suppresses or hides “irrelevant detail”
(problem dependent)

– A form of separation of concerns (different 
abstractions provide different views)

• Examples: stacks, queues, objects

CIS 422/522 Spring 2005 19



Design Applications (2)

2) Model the problem domain
– Goal: leverage domain knowledge to simplify 

understanding, creating, checking designs
– Approach: Provide components that make it easier 

to model a class of problems
• May be quite broad (e.g., type real, type float)
• May be very problem specific (e.g., class automobile, 

book object)

• Usually reduces complexity but not always 
(different purpose)

CIS 422/522 Spring 2005 20



Common Confusions

• Euphemism for “vague”
– Abstractions are precise about what they model
– Should always be definitive whether an instance is in the set 

covered in the abstraction

• Euphemism for “high level”
– Meaningless without describing the relation that defines the 

partial order
– “More abstract” usually ill defined

• Euphemism for “untrue” or “not really”
– An abstraction is not a lie
– Anything true of an abstraction must be true of its instances

CIS 422/522 Spring 2005 21



Other General Principles

• Rigor and Formality
– Should be as rigorous and formal as possible
– See handout

• Simplicity
– “Things should be made as simple as possible –

but no simpler” – A. Einstein
– Simplicity is the hallmark of great design

CIS 422/522 Spring 2005 22



More Specific Software Principles

Modularity
Information hiding

Most solid first

CIS 422/522 Spring 2005 23



Modularity

• System design implies that we decompose a 
problem into parts such that it is easier to 
understand, develop, or check the parts, then 
their relations, than the problem as a whole
– Application of separation of concerns

• A system is “well-structured” when
– Components can be easily mastered individually
– Connections between components contain little 

information (I.e., connections are few and 
assumptions are simple)

• E.g., functions, modules, objects

CIS 422/522 Spring 2005 24



Design Applications

• Reduce complexity: Components are simpler 
hence easier to understand, write, show 
correct

• Ease of change: Can limit changes to small 
numbers of components

• Ease of construction: Can compose complex 
system from components rather than 
underlying language

• Reuse: Can reuse larger units

CIS 422/522 Spring 2005 25



Decomposition Approaches

• Methods vary most obviously in their method 
of decomposition
– Vary in assumptions of what’s important hence, 

goals for the decomposition
– Vary principles or heuristics guiding 

decomposition
– Vary in methods of representation
– Vary in notion of “good design” and how to check it
– Vary in binding times

CIS 422/522 Spring 2005 26



Common Confusions

• One size fits all
– The same decomposition is unlikely to address all design 

goals
– Need to be clear which goals have priority
– Issue with heuristics

• Heuristics: Model nouns as objects
• Which goal(s) is this intended to support?

• Binding time
– The same decomposition may not be appropriate to distinct 

concerns over time
– Need to be clear what is being controlled
– E.g., design time decomposition vs. requirements or code

CIS 422/522 Spring 2005 27



Information Hiding

CIS 422/522 Spring 2005 28



Definitions: Information Hiding

• Information hiding (or encapsulation): Design 
principle of limiting dependencies between 
components by hiding information other components 
should not depend on. 

• An information hiding decomposition is one following 
the design principles that:
– System details that are likely to change independently are 

encapsulated in different modules. 
– The interface of a module reveals only those aspects 

considered unlikely to change. 

• The details hidden by the module interface are called 
secrets of the module. 

CIS 422/522 Spring 2005 29



Design Applications

• Maintainability, Ease of Change
– Limits dependencies between modules to things 

on the interface
– Confines aspects of the system that are likely to 

change to a small set of modules (hopefully, one)
• Manage complexity

– Reveals only aspects of the system common 
across implementations

CIS 422/522 Spring 2005 30



Common Confusions

• Confused with “having something to hide”
– There are ulterior motives to “hiding” information

• Confused with “unclear,” “imprecise,” or other 
forms of not providing the information needed 
by other designers
– Perceived to make other designer’s job harder 

because of what they cannot use
– Harder to understand because one cannot look at 

the implementation

CIS 422/522 Spring 2005 31



Abstraction

• Applied at the module level to choose what to 
put on the module interface
– Model the problem
– Manage complexity

• Can be viewed as the obverse of information 
hiding
– Both may apply and be used on the same module
– Both govern what is on the interface and what is 

not
– But, they have different goals

CIS 422/522 Spring 2005 32



Similarities

• An information hiding module necessarily 
abstracts from its hidden details (e.g., there 
are typically many possible implementations). 

• Similarly, an abstract interface hides those 
details it abstracts from (i.e., the qualities of 
instances that are not in common)

• Two sides of the same coin but differing in 
focus and intent

CIS 422/522 Spring 2005 33



Differences

• Goals of abstraction focus on simplification 
and conceptual integrity (e.g., modeling the 
problem space)
– Abstractions focus on providing appropriate virtual 

machines for the problem to be solved.
– An abstraction is characterized by its interface 

(visible operations and state)
– The conceptual integrity of a design depends on 

choosing a set of consistent abstractions.

CIS 422/522 Spring 2005 34



Differences

• Goals of information hiding focus on 
localization (limiting dependencies). 
– Information hiding decisions focus on deciding 

what information should not be used by other parts 
of the system (particularly, which aspects are likely 
to change independently)

– An information hiding decision is characterized by 
describing the module’s secret.

– The maintainability of a design depends on limiting 
dependencies such that changes are localized.

CIS 422/522 Spring 2005 35



Examples

• In general, one will not suffice to do the job of 
the other. Both must be considered

• Windows 95/98
– Provides common abstract interface to data and 

programs 
– Fails to provide information hiding among 

programs
• Common data and programs in registry
• Installing or uninstalling one program can disable an 

unrelated program

CIS 422/522 Spring 2005 36



Examples (2)

• Conversely, a program may hide details but 
provide poor abstract interfaces

• Windows 3.1
– Hides differences among files and programs (i.e., 

user cannot access the information through the 
windows interface)

– But, same operation (drag and drop) may or may 
not work on different types of files

– Result - still had to know DOS to really use 3.1

CIS 422/522 Spring 2005 37



Summary

• Use abstraction when the issue is what 
should be on the interface (form and content)

• Use information hiding when the issue is what 
information should not be on the interface 
(visible or accessible)

CIS 422/522 Spring 2005 38



But...

• Don’t accept unrealistic simplifications
• Again, there is a difference between an 

abstraction and a lie
– e.g. Stack with infinite capacity
– Desktop “folder” that’s actually on the web

CIS 422/522 Spring 2005 39



Most Solid First

CIS 422/522 Spring 2005 40



Definition

• Most solid first: in a sequence of decisions, 
the decisions that are least likely to change 
should be made first

• Goal: reduce rework by limiting the impact of 
changes

• Application: used to order a sequence of 
design decisions

CIS 422/522 Spring 2005 41



Principles in Context

• Modularization divides tasks into
– Work assignments
– Units of change
– But not abstract machine layers

• Abstraction
– Applied to design of module interfaces
– E.g., to produce problem-specific types
– Addresses: What belongs on the interface

• Information Hiding
– Applied to determine what belongs inside of a module (or different 

modules)
– Used to categorize modules
– Addresses: What should not be depended on

• Most solid first – guides the order of decomposition decisions

CIS 422/522 Spring 2005 42



Summary

• Principles provide guidance in making “good”
design decisions

• Must understand the underlying goal to apply 
properly

• Typically require experience to apply well (in 
contrast to heuristics)

• Are method-independent and more durable

CIS 422/522 Spring 2005 43



CIS 422/522 Spring 2005 44


	Design PrinciplesandPrinciples of Design
	Overview
	System “Design” Implies…
	What are Principles?
	Key Points
	Principles vs. Heuristics
	Principles vs. Heuristics (2)
	Example Heuristics
	Separation of Concerns
	Separation of Concerns
	Typical SE Separations
	Application
	Design Applications
	Caveats
	Difficulties
	Abstraction
	Abstraction
	Examples
	Design Applications
	Design Applications (2)
	Common Confusions
	Other General Principles
	More Specific Software Principles
	Modularity
	Design Applications
	Decomposition Approaches
	Common Confusions
	Information Hiding
	Definitions: Information Hiding
	Design Applications
	Common Confusions
	Abstraction
	Similarities
	Differences
	Differences
	Examples
	Examples (2)
	Summary
	But...
	Most Solid First
	Definition
	Principles in Context
	Summary

