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Overview

• Review of why we design
• The role of design principles
• General Design Principles

– Separation of concerns
– Abstraction
– Rigor and Formality*
– Simplicity*

• More Specific Software Principles
– Modularity

• Information hiding
• Abstraction (again)

– Most solid first
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System “Design” Implies…

• A Design (n) implies we have:
– Goals – What are we trying to achieve?
– Choices – What design choices can we make?
– Assumptions or Constraints – How are the design choices 

limited?

• To Design (v) implies:
– Processes – What sequence of activities and work products 

are needed to achieve the goals?
– Methods – What technologies, techniques and notations will 

we use?

• Design principles embody goals/assumptions and 
help guide choices
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What are Principles?

• Principle (n): a comprehensive and 
fundamental rule, doctrine, or assumption

• Design Principles – rules that guide 
developers in making design decisions 
consistent with overall design goals and 
constraints
– Guide processes
– Embodied in methods and techniques (e.g., for 

decompositions)
– Disc: Which principles drive OOD?
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Key Points

• Principles are associated with particular 
design goals or kinds of goals
– Must understand the relationship between the 

principle and the goal to apply properly
– Principles can overlap or conflict just as goals can

• Principles may exist and/or be applied at 
different levels of specificity depending on the 
problem context
– Separation of concerns – general problem solving 

strategy applicable everywhere
– Transparency – deals with a specific problem of 

abstract machine layers
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Principles vs. Heuristics
• Heuristic: involving or serving as an aid to 

problem-solving by experimental and 
especially trial-and-error methods 
– AKA: rules of thumb 
– Often method or problems specific version of a 

principle
• Heuristics arise from practice
• Principles arise from the essence of the 

problem
– Can be extrapolated from nature of the problem
– Universally applicable where assumptions hold
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Principles vs. Heuristics (2)

• Approaches to system decomposition
• Heuristics for choosing objects

– Find the nouns in the problem description
– Identify the “things” that act

• Principles
– Information hiding – encapsulate likely changes
– Abstraction – encapsulate details not directly 

relevant to the problem
• Heuristics are generally method specific and 

weaker (less reliable) but easier to apply
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Example Heuristics
• Underline the nouns
• Identify causal agents
• Identify coherent services
• Identify real-world items
• Identify physical devices
• Identify essential abstractions
• Identify transactions
• Identify persistent information
• Identify visual elements
• Identify control elements
• Execute scenarios
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Separation of Concerns
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Separation of Concerns

• Principle: divide a problem into parts such 
that each part addresses a distinct concern

• Goal: divide a problem parts that can be 
addressed separately

• Assumptions
– A “divide and conquer” strategy
– Parts will be simpler than the whole
– Concerns are relatively independent
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Typical SE Separations

• Separation in time
– Basis for life cycle models

• Separation of qualities
– Security, performance, reliability

• Separation of problem views
– Data flow vs. calls vs. threading

• Separation of purpose
– Identify what SW must do (requirements) 

separately from how it does it (design)
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Application

• Very broad applicability if concerns can be 
cleanly separated

• Clean separation typically requires removing 
some conflicting concerns
– Must make certain overall decisions constraining 

the design space
– Efficiency vs. correctness – establish correctness 

then permit only semantic preserving 
transformations to achieve efficiency

• Doing this right requires skill and experience
– The single most misapplied principle is SE
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Design Applications

• Creating distinct views of a system based on distinct 
concerns
– Esp. for software architecture where each view comprises 

particular set of components, relations, and interfaces
– “Task” (process, thread) view 

• Shows potentially concurrent tasks, task dependencies (e.g. 
precedence, exclusion), and synchronization mechanisms

• Used for scheduling, deadlock detection
– “Calls” view

• Shows procedures, call protocol and parameters, and which 
calls which

• Used for performance (e.g., bottlenecks)
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Caveats

• Must be able to identify and characterize 
distinct concerns

• Must adequately understand dependencies 
between different concerns

• If done too soon, may miss issues and 
opportunities that span concerns (e.g., 
efficiency, simplicity)

• What makes SoC difficult to apply in software 
design?
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Difficulties

• Complexity and tightly related concerns make 
SoC difficult to apply

• The most misapplied principle in software 
engineering 
– People (and some methods) act as if strongly 

connected issues were distinct
– Implication: connections that are really there 

cannot be seen 
• Cannot see the side-effects of design decisions
• E.g., Improve performance but compromise security

– Results in loss of control (usefulness of the SE 
definition)

CIS 422/522 Spring 2005 15



Abstraction
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Abstraction

• General: disassociating from specific 
instances to represent what the instances 
have in common. 
– Abstraction defines a one-to-many relationship 
– E.g., one type, many possible implementations

• Modular decomposition: Interface design 
principle of providing only essential 
information and suppressing unnecessary 
details by exploiting commonality.
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Examples

• Maps, finite state machines, circuit diagrams
• Abstract data types like stacks (many 

possible implementations)
• Virtual machine interfaces like the Mac or 

Windows desktop (common interface to 
different types of entities including different 
file types and executable programs)
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Design Applications

• Two primary uses
1) Reduce Complexity

– Goal: manage complexity by reducing the amount 
of information that must be considered at one time

– Approach: Separate information important to the 
problem at hand from that which is not

– Abstraction suppresses or hides “irrelevant detail”
(problem dependent)

– A form of separation of concerns (different 
abstractions provide different views)

• Examples: stacks, queues, objects
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Design Applications (2)

2) Model the problem domain
– Goal: leverage domain knowledge to simplify 

understanding, creating, checking designs
– Approach: Provide components that make it easier 

to model a class of problems
• May be quite broad (e.g., type real, type float)
• May be very problem specific (e.g., class automobile, 

book object)

• Usually reduces complexity but not always 
(different purpose)
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Common Confusions

• Euphemism for “vague”
– Abstractions are precise about what they model
– Should always be definitive whether an instance is in the set 

covered in the abstraction

• Euphemism for “high level”
– Meaningless without describing the relation that defines the 

partial order
– “More abstract” usually ill defined

• Euphemism for “untrue” or “not really”
– An abstraction is not a lie
– Anything true of an abstraction must be true of its instances
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Other General Principles

• Rigor and Formality
– Should be as rigorous and formal as possible
– See handout

• Simplicity
– “Things should be made as simple as possible –

but no simpler” – A. Einstein
– Simplicity is the hallmark of great design
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More Specific Software Principles

Modularity
Information hiding

Most solid first
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Modularity

• System design implies that we decompose a 
problem into parts such that it is easier to 
understand, develop, or check the parts, then 
their relations, than the problem as a whole
– Application of separation of concerns

• A system is “well-structured” when
– Components can be easily mastered individually
– Connections between components contain little 

information (I.e., connections are few and 
assumptions are simple)

• E.g., functions, modules, objects
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Design Applications

• Reduce complexity: Components are simpler 
hence easier to understand, write, show 
correct

• Ease of change: Can limit changes to small 
numbers of components

• Ease of construction: Can compose complex 
system from components rather than 
underlying language

• Reuse: Can reuse larger units
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Decomposition Approaches

• Methods vary most obviously in their method 
of decomposition
– Vary in assumptions of what’s important hence, 

goals for the decomposition
– Vary principles or heuristics guiding 

decomposition
– Vary in methods of representation
– Vary in notion of “good design” and how to check it
– Vary in binding times
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Common Confusions

• One size fits all
– The same decomposition is unlikely to address all design 

goals
– Need to be clear which goals have priority
– Issue with heuristics

• Heuristics: Model nouns as objects
• Which goal(s) is this intended to support?

• Binding time
– The same decomposition may not be appropriate to distinct 

concerns over time
– Need to be clear what is being controlled
– E.g., design time decomposition vs. requirements or code
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Information Hiding
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Definitions: Information Hiding

• Information hiding (or encapsulation): Design 
principle of limiting dependencies between 
components by hiding information other components 
should not depend on. 

• An information hiding decomposition is one following 
the design principles that:
– System details that are likely to change independently are 

encapsulated in different modules. 
– The interface of a module reveals only those aspects 

considered unlikely to change. 

• The details hidden by the module interface are called 
secrets of the module. 
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Design Applications

• Maintainability, Ease of Change
– Limits dependencies between modules to things 

on the interface
– Confines aspects of the system that are likely to 

change to a small set of modules (hopefully, one)
• Manage complexity

– Reveals only aspects of the system common 
across implementations
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Common Confusions

• Confused with “having something to hide”
– There are ulterior motives to “hiding” information

• Confused with “unclear,” “imprecise,” or other 
forms of not providing the information needed 
by other designers
– Perceived to make other designer’s job harder 

because of what they cannot use
– Harder to understand because one cannot look at 

the implementation
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Abstraction

• Applied at the module level to choose what to 
put on the module interface
– Model the problem
– Manage complexity

• Can be viewed as the obverse of information 
hiding
– Both may apply and be used on the same module
– Both govern what is on the interface and what is 

not
– But, they have different goals
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Similarities

• An information hiding module necessarily 
abstracts from its hidden details (e.g., there 
are typically many possible implementations). 

• Similarly, an abstract interface hides those 
details it abstracts from (i.e., the qualities of 
instances that are not in common)

• Two sides of the same coin but differing in 
focus and intent
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Differences

• Goals of abstraction focus on simplification 
and conceptual integrity (e.g., modeling the 
problem space)
– Abstractions focus on providing appropriate virtual 

machines for the problem to be solved.
– An abstraction is characterized by its interface 

(visible operations and state)
– The conceptual integrity of a design depends on 

choosing a set of consistent abstractions.
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Differences

• Goals of information hiding focus on 
localization (limiting dependencies). 
– Information hiding decisions focus on deciding 

what information should not be used by other parts 
of the system (particularly, which aspects are likely 
to change independently)

– An information hiding decision is characterized by 
describing the module’s secret.

– The maintainability of a design depends on limiting 
dependencies such that changes are localized.
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Examples

• In general, one will not suffice to do the job of 
the other. Both must be considered

• Windows 95/98
– Provides common abstract interface to data and 

programs 
– Fails to provide information hiding among 

programs
• Common data and programs in registry
• Installing or uninstalling one program can disable an 

unrelated program
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Examples (2)

• Conversely, a program may hide details but 
provide poor abstract interfaces

• Windows 3.1
– Hides differences among files and programs (i.e., 

user cannot access the information through the 
windows interface)

– But, same operation (drag and drop) may or may 
not work on different types of files

– Result - still had to know DOS to really use 3.1
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Summary

• Use abstraction when the issue is what 
should be on the interface (form and content)

• Use information hiding when the issue is what 
information should not be on the interface 
(visible or accessible)
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But...

• Don’t accept unrealistic simplifications
• Again, there is a difference between an 

abstraction and a lie
– e.g. Stack with infinite capacity
– Desktop “folder” that’s actually on the web
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Most Solid First
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Definition

• Most solid first: in a sequence of decisions, 
the decisions that are least likely to change 
should be made first

• Goal: reduce rework by limiting the impact of 
changes

• Application: used to order a sequence of 
design decisions
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Principles in Context

• Modularization divides tasks into
– Work assignments
– Units of change
– But not abstract machine layers

• Abstraction
– Applied to design of module interfaces
– E.g., to produce problem-specific types
– Addresses: What belongs on the interface

• Information Hiding
– Applied to determine what belongs inside of a module (or different 

modules)
– Used to categorize modules
– Addresses: What should not be depended on

• Most solid first – guides the order of decomposition decisions
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Summary

• Principles provide guidance in making “good”
design decisions

• Must understand the underlying goal to apply 
properly

• Typically require experience to apply well (in 
contrast to heuristics)

• Are method-independent and more durable
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