
CIS 422/522 Spring 2005 1

What is Software Engineering About?

Stuart Faulk
CIS 422/522

The “Software Crisis”

CIS 422/522 Spring 2005 2

• Have been in “crisis” since the advent of “big”
software (roughly 1965)

• What we want for software development
– Low risk, predictability
– Lower costs and proportionate costs
– Faster turnaround

• What we have:
– High risk, high failure rate
– Poor delivered quality
– Unpredictable schedule, cost, effort

• Characterized by lack of control (inability plan the
work, work the plan)

Symptoms of the Crisis

CIS 422/522 Spring 2005 3

• Two of every eight large software project is
cancelled

• Average projects overshoot schedule by 50%,
large project do much worse

• 75% of large systems are failures in the
sense that they do not operate as intended

• 60% of them fail to deliver a single working
line of code

• E.g., Ariane 5, Therac 25, Mars Lander, DFW
Airport, FAA ATC etc., etc. (See examples in
Text)

Discussion Context

CIS 422/522 Spring 2005 4

• Focus large, complex systems
– Multi-person: many developers, many stakeholders
– Multi-version: intentional and unintentional evolution

• Quantitatively distinct from small developments
– Complexity of software (e.g. rises non-linearly with size)
– Complexity of communication rises exponentially

• Qualitatively distinct from small developments
– Multi-person introduces need for organizational functions

(management, accounting, marketing), policies, oversight,
etc.

– More stakeholders and more kinds of stakeholders
• Rule of thumb: project starts to be “large” when

group developing a single product can’t fit
around a table.

Software “Industry” is Pre-Industrial

CIS 422/522 Spring 2005 5

Pre-Industrial

• Craftsman builds product
– Builds one product at a time
– Each product is unique, parts

are not interchangeable
– Quality depends on

craftsman’s skill – product of
training, experience

– Many opportunities for error
• Focus on individual products

– Customization is easy
• Scaling is difficult

– Parts are not interchangeable
– No economy of scale
– Control problems rise

exponentially with product
size!

Post-Industrial

• Products produced by
machines
– Quality depends on

machines & manufacturing
process

– Production requires little
training or experience

• Focus on developing the
means of production
– Craftsman builds means to

build product (tools, factory)
– Customization is difficult

• Easily scales
– Parts are interchangeable
– Products are alike
– Economies of scale apply

Industrial Model Distinguished by its Process

CIS 422/522 Spring 2005 6

Pre-Industrial Post-Industrial

Build Products

Factory
(Means of Production)

Product

Develop Means of Production
• Design Manufacturing process
• Design Factory
• Build Factory

Build Product
(by hand)

Product

Historical
note: Eli

Whitney’s
vision and
invention

transformed
the product

development
process.

Implications

CIS 422/522 Spring 2005 7

• Small system development is driven by technical
issues (I.e., programming)

• Large system development is dominated by
organizational and control issues
– Managing complexity, communication, coordination, etc.
– Projects fail when these issues are inadequately addressed

• Lesson #1: programming ≠ software engineering
– Techniques that work for small systems fail utterly when scaled

up
– Programming alone won’t get you through real developments or

even this course

40-20-40 Rule

CIS 422/522 Spring 2005 8

Requirements &
Design

Coding

Verification and
Validation

Programming View

CIS 422/522 Spring 2005 9

Get Requirements

Test
Program

Write
Program

Insert

CIS 422/522 Spring 2005 10

Origins of SE

CIS 422/522 Spring 2005 11

• Term “software engineering” was coined at 1968
NATO conference:

“Software engineering is the establishment and use of sound
engineering principles in order to obtain economically software
that is reliable and works efficiently on real machines.”

• Response to “software crisis” manifest by systems
that
– Failed to provide desired customer functionality
– Lacked critical qualities (e.g., performance, safety, reliability)
– Overran budget and schedule (hugely)
– Were difficult to change or maintain

• Desire for SE to be more like other engineering
disciplines
– Analytical, predictable, manageable
– State as an aspiration, not statement of existing condition

Has anything changed?

CIS 422/522 Spring 2005 12

• Incorrect to conclude that no progress has been
made
– Substantial improvements in programming languages, tool
– Better understanding and control of processes

• But the problems have also changed
– Large developments now are orders of magnitude more

code than in 1968
– Improved capabilities are overcome by larger problems,

greater complexity

• Note: “software crisis” is a euphemism for “state
of the practice”

What hasn’t changed?

CIS 422/522 Spring 2005 13

• Still not an engineering discipline in classic
sense
– Implies use of applied mathematics and

systematic methods to develop and assess
product properties

– These tools are immature where they exist at all
– Software “engineering” is not taught, licensed,

regulated, ore recognized as an engineering
discipline (e.g., by engineers)

What hasn’t changed?

CIS 422/522 Spring 2005 14

• But we often don’t apply what we know
– Existing methods, models often not understood or

used in industry
– Little attention is given to process or products

other than code
– Quality of products depends on qualities of the

individuals rather than qualities of engineering
practices

• Development continues to be characterized
by lack of control (inability plan the work,
work the plan)

View of SE in this Course

CIS 422/522 Spring 2005 15

• The purpose of software engineering is to
gain and maintain intellectual and managerial
control over the products and processes of
software development.
– “Intellectual control” means that we are able make

rational choices based on an understanding of the
downstream effects of those choices (e.g., on
system properties).

– Managerial control means we control development
resources (budget, schedule, personnel).

Control is the Goal

CIS 422/522 Spring 2005 16

• Both are necessary for success!
• Intellectual control implies

– We understand what we are trying to achieve
– Can distinguish good choices from bad
– We can reliably and predictably achieve what we want

• Managerial control implies
– We make accurate estimations
– We deliver on schedule and within budget

• Assertion: Managerial control is not really possible
without intellectual control (no matter what the
Harvard School of Business says)

Course Approach

CIS 422/522 Spring 2005 17

• Will learn methods for acquiring and maintaining
control of software projects

• Managerial control
– Planning and controlling development
– Process models addressing development issues (e.g. risk,

time to market)
– People management and team organization

• Intellectual control
– Methods for software requirements, architecture, design, test
– Notations, verification & validation

• Caveat: we can really only scratch the surface
(but it’s important)

Assignment

CIS 422/522 Spring 2005 18

• Reading:
– Text: Chapter 5

• Project: prepare for first project meeting
(team assignments Friday)
– Begin considering how you will approach the

problem
– Think about what role you want to play

	What is Software Engineering About?
	The “Software Crisis”
	Symptoms of the Crisis
	Discussion Context
	Software “Industry” is Pre-Industrial
	Industrial Model Distinguished by its Process
	Implications
	40-20-40 Rule
	Programming View
	Insert
	Origins of SE
	Has anything changed?
	What hasn’t changed?
	What hasn’t changed?
	View of SE in this Course
	Control is the Goal
	Course Approach
	Assignment

