
Final SRS/SDS/Project Pan  

(Group Three) 

Team Members: 

Jason Prideaux
Willy Suhali

Christian Tan
Hirokazu Yoshimura



Final SRS/SDS/Project Plan Page i

TABLE OF CONTENTS

SOFTWARE REQUIREMENTS SPECIFICATION .............................................................1

PROBLEM STATEMENT .............................................................................................................1
PROPOSEDSOLUTION...............................................................................................................1
SCENARIO................................................................................................................................1
SPECIFICATION........................................................................................................................2
ADDITIONAL REQUIREMENTS: ..................................................................................................6
KNOWN BUGS:.........................................................................................................................6

SOFTWARE DESIGN SPECIFICATIONS............................................................................7

DESIGN: HIGH LEVEL VIEW .......................................................................................................7
STRUCTURE: VIEW OFINDIVIDUAL COMPONENTS.....................................................................8
CHANGES TO THEORIGINAL DESIGN......................................................................................10
ORGANIZATION PRINCIPLES...................................................................................................10
RATIONALE ...........................................................................................................................10

PROJECT PLAN....................................................................................................................12

PROJECTORGANIZATION........................................................................................................12
RISK ANALYSIS AND RISK REDUCTIONSTRATEGIES................................................................13
WORK BREAKDOWN AND PROJECTSCHEDULE........................................................................13
MONITOR AND REPORTPROGRESS..........................................................................................15



Final SRS/SDS/Project Plan Page ii

FIGURES

FIGURE1. BLITZ'SMAPSTERAPPLICATION ....................................................................................3
FIGURE2. BROKENLINKS TAB WINDOW......................................................................................5
FIGURE3. SUMMARY TAB WINDOW.............................................................................................6
FIGURE4. INTERACTION OF DATA BETWEEN SYSTEM MODULES.....................................................7
FIGURE5. OBJECTMODEL OFSYSTEM COMPONENTS....................................................................9
FIGURE6. THE SPIRAL PROCESSMODEL ....................................................................................14

TABLES

TABLE 1. DESCRIPTIONOF THE LAYOUT WINDOW ICONS.............................................................4
TABLE 2. TEAM ROLE ASSIGNMENTS.........................................................................................12
TABLE 3. RISK ANALYSIS AND RISK REDUCTION........................................................................13
TABLE 4. PROJECTMILESTONES.................................................................................................14
TABLE 5. PROJECTTASKS..........................................................................................................16



Final SRS/SDS/Project Plan Page 1

Software Requirements Specification

Problem Statement
A web site with an enormous amount of content makes it difficult for a web author or web
manager to visualize the content and hyperlinks for his or her site. A web page usually contains
hyperlinks to other documents — both on the author’s web site as well as to those on other web
sites. Web authors can find it overwhelming to visually manage the contents of a site. This is
especially apparent when the web site has a large amount of content. Furthermore, it is also an
arduous task to manually check if the hyperlinks on all of the site’s web pages are active or
broken. Large web sites are often separated into different subdivisions, for which different teams
of developers design each subdivision. A simple example would be that of the Gladstone server
at the University of Oregon, where each user can have their own web page to design. Such
segregation renders managing a web site an even more complicated undertaking.

Proposed Solution
Blitz’s Mapsteris a Java application is targeted towards web managers and web authors. It
allows them to quickly access the tree layout of a web site based on an entry point of the
Uniform Resource Locator (URL) and its subsequent hyperlinks. It also checks if the hyperlinks
on the site are active or broken, and provides a list of broken hyperlinks. The main features of
Mapsterare:

• Runs virtually on any platform since it is a Java application.

• Provides a visual layout of the contents of a web site based on the entry point URL;

• Has an input field for user to specify how deep the search would go (for quick
visualization of the layout);

• Checks if the hyperlinks on the pages of the site are active or broken;

• Provides a list of broken hyperlinks for easy management;

• Generates a quick summary of the site accessed, such as the number of files encountered;

• Distinguishes html files from other web-accessible documents by way of icons;

• Displays all hyperlinks from html files to other documents;

• Distinguishes relative links from absolute links; and

• Distinguishes external links (those to documents outside the site being mapped) from
local links.

In the previous SRS,Blitz planned to include multiple views of the structure of the web site
searched. However, due to time constraints, this trivial feature has been omitted to meet the
release deadline of the application.

Scenario

Broken Hyperlinks
Joe is a web author and has a web site. It has been a while since he updated his web pages, and
wonders if the hyperlinks on his web pages are still active. It would be a strenuous task for him



Final SRS/SDS/Project Plan Page 2

to manually check the hyperlinks on each page on his web site. Instead, by putting the URL to
his web site intoBlitz’s Mapster, and a click of theStart Mapbutton, Joe is able to quickly
access the status of the hyperlinks on his web site. By looking at the broken hyperlinks section of
Mapster, Joe was able to quickly see which hyperlinks were broken, and was able to quickly fix
those broken hyperlinks.

Visual Layout of Hyperlinks
Jane just joinedMacrohard, Inc.as a web manager. She is assigned to manage the ‘New
Products’ subdivision of the company’s web site. Jane is also told that there are some files on the
server that are no longer hyperlinked. Her first tasks are to remove all files that are no longer
hyperlinked. Unfortunately, there is no documentation on the layout of the files and hyperlinks
for the ‘New Products’ subdivision. Without documentation, Jane finds it difficult to visualize
the layout of the site and the hyperlinks on the pages on this site.

With Blitz’s Mapster, Jane is able to enter the URL of the site, and have the application map the
site for her. After mapping, Jane was able to look at the tree structure produced to determine the
files on the site. Comparing all the web-accessible files shown onMapsterand the files on the
server, Jane is able to remove all the unwanted files with ease.

Specification
In the previous SRS,Blitz planned to have a summary button that would pop up a new window
showing the summary of the site mapped. However, after much thought, Blitz decided that it
would be more useful to the user if the user can dynamically see the summary of the site as it is
being mapped. Hence, a separate Summary tab has been added to the System. Also, in place of
the summary button,Blitz has added aStop Mappingbutton that allows the user to stop a current
search. The improvedMapsterhas the following features (see Figure 1):

• Pull-down menu
• Entry Point URLtextbox field
• Maximum Breadthtextbox field
• Map Sitebutton
• Clear button
• Stop Mappingbutton
• Layout window
• Broken Linkstab window
• Summarytab window
• Icons

Pull-down menu
Mapsterhas the familiar pull-down menu for actions such as Copy, Paste, and Quit Application.

Entry Point URL textbox field
This textbox field is where the user enters the entry point URL from whichMapsteris to start its
search. When the user presses theMap Sitebutton, Mapster will check if the field is empty, or if
it is accessible, and alerts the user of any errors prior to mapping. It also checks for a protocol. If
no protocol is entered, the default“http://” will be appended to it.



Final SRS/SDS/Project Plan Page 3

Figure 1. Blitz's Mapster Application

Maximum Breadth textbox field
This textbox field is where the user enters the maximum breadth for whichMapsteris to search.
Since web sites can get fairly large, a limit on the breadth of the search can lessen the wait time
for quick checks on a web site. The user is alerted if an invalid number has been entered.

Map Site button
When pressed,Mapsterbegins its search using the value entered in theEntry Point URLtextbox
field. This button is disabled once it is pressed to prevent the user from pressing it twice during a
search.



Final SRS/SDS/Project Plan Page 4

Clear button
When pressed, theEntry Point URLtextbox field, layout window, and theBroken Hyperlinks
window are cleared for the next search. The default maximum breadth is also restored. This
button is disabled once theMap Sitebutton is pressed to prevent the user from pressing it during
a search.

Stop Mapping button
When pressed,Mapsterwould terminate mapping the site. This allows the user to cancel any
search to start another search. This button is only enabled when theMap Sitebutton is pressed
and is disabled once the search is complete or when the user presses the Stop Mapping button.

Layout window
This is the window where the layout of the site is displayed. Since the builder of the site is
threaded, this layout window is dynamically updated when the hyperlinks on each page is
obtained and processed. This feature is an improvement based on testing of the system, as
previous builds did not have any display until the site was completed, which can take up to 10
minutes. The layout window also uses icons to categorize the hyperlinks obtained (see below), as
well as tool-tip text to let the user quickly understand what each icon means.

Icons
The Layout window uses a tree structure to display the relationship of web documents.Mapster
utilizes icons to categorize the type of documents obtained from the hyperlinks found. The
following table shows the type of icons and their description

Icon Description

This icon represents a broken hyperlink. This can represent any type of
document (HTML, external, image, audio, etc.) that is not accessible by
Mapster.

This icon represents an external hyperlink. External hyperlinks are not mapped.

This icon represents a secured document, going though Secured Socket Layer
(SSL). Such documents are not mapped for security reasons.

This icon represents HTML files on the local server. This icon is expandable
(depending on the maximum breadth limit) to contain other documents.

This icon represents image files.

This icon represents all other web-accessible documents on the local server.

Table 1. Description Of The Layout Window Icons



Final SRS/SDS/Project Plan Page 5

Broken Links tab window
In the previous design, Blitz had proposed aBroken Linkswindow to have four columns: Status,
Hyperlink, In Page, and Page Title. However, upon revision, it is decided that theStatusand
Page Titlecolumn were trivial and redundant. Hence the new broken Links tab window has only
the following two columns (See Figure 2):

1. TheAddresscolumn displays the broken hyperlinks.

2. TheIn Pagecolumn displays the location of the web page where the hyperlink is broken.

Figure 2. Broken Links Tab Window

Summary tab window
This window dynamically displays the summary of the site as it is being mapped. This tab
window is a feature improvement from the previously proposed pop-up summary window. This
window displays information such as the total number of hyperlinks encountered, the number of
those hyperlinks being HTML files, the number of web-accessible documents (such as images,
audio files, downloadable files, etc.), the number of external hyperlinks, and the number of
broken hyperlinks (SeeError! Reference source not found.).



Final SRS/SDS/Project Plan Page 6

Figure 3. Summary Tab Window

Additional Requirements:
Mapsteris a Java application, and hence is platform independent. Since it is a Java application, it
requires the user to have Java version 1.3 to be already installed on the computer. Also, since
Mapsterqueries web sites, an Internet connection must already be established.

Known Bugs:
In previous SRS and SDS,Blitz planned to use a freeware API to aid in the development of
Mapster. However, after much testing, we discovered that the freeware API was incompatible
with our system, and it delayed our project significantly. For that, we had to build the spider and
HTML Parser from scratch, and due to limited time constraints, some of the following bugs have
yet to be ironed out:

• Some hyperlinks are displayed as broken, but are not. This problem is inherit in the
URLParser class. This problem arise when the URLConnection class (Java API) returns a
header that is not of the form “HTTP/1.0 200 OK” which is a protocol that signals that
the web document is located on the server.

• Hyperlinks that were visited are searched again redundantly. This problem is inherit in
the DataBuilder class.

• When searching particular websites, some hyperlinks are not displayed even though they
exist on the page. This problem is inherit in the DocFetcher class. This problem arises in
using the URLConnection class, as it sometimes returns only part of the entire document.

• Javascripts and dynamic pages are not supported. This is a design choice made byBlitz.
Future upgrades of this system may include dynamic pages and javascript links to other
pages.



Final SRS/SDS/Project Plan Page 7

Software Design Specifications

Design: high level view
In the Software Requirements Specifications (SRS) it is clear that the required system needs to
take in a Uniform Resource Locator (URL) and create a data structure, which is to be displayed
on a user interface window. Given this basic description of the product, the design consists of
modules that are built to perform specific tasks that all work together to create the functionality
of Blitz’s Mapster.

The different tasks required ofMapsterare fetching documents from a URL, creating a data
structure from the aforementioned documents, and a user interface to display the data structure to
the intended user.

The abstract structure ofMapsterconsists of four main modules, which will make up the system.
These four main modules are Fetcher, Builder, Data Structure, and Graphical User Interface
(GUI). Some of these modules will contain multiple components, such as the Data Structure,
which contains the components, WebTree and Node. The system components are depicted in
Figure 2, where the arrows represent the flow of data. The GUI sends a URL to the builder, who
sends the URL to the Fetcher, who returns a list of hyperlinks. Then the Builder calls on
UrlParser to get information regarding the URL. Next Builder creates Nodes, which represent
the hyperlinks, and these Nodes are sent to the WebTree. Finally the Builder contains a tree
structure in the form of a WebTree; Builder then takes the tree structure and sends it to the GUI,
who adds the tree structure to a displayable JTree.

Figure 4. Interaction of data between system modules



Final SRS/SDS/Project Plan Page 8

Structure: View of Individual Components
Blitz’s Mapsteris composed of four main modules: Fetcher, Builder, Data Structure, and GUI.
In addition, Data Structure is composed of five components: BrokenLink, Node,
NodeComparator, NodeRenderer, and WebTree. Fetcher is composed of DocFetcher and
UrlParser. Figure 4 on the previous page gives a object model of these different components and
shows in more detail the inner attributes and functions of each component. In addition, Figure 3
on the following page is a low-level view of each component. Each box displays the component
name, the information stored in the component, and the component’s primary functions/methods.

Fetcher:
Doc Fetcher
The DocFetcher is the component that takes a URL, and returns a list of hyperlinks in the
URL. The DocFetcher grabs the html content from a URL, and then proceeds by parsing
the html and finding all hyperlinks on that page.

UrlParser
This component is primarily a helper class. It is a static class that has the purpose of
providing a set of helper methods for the Builder module. When the Builder is creating
Nodes out of hyperlinks returned from the DocFetcher, it needs to gather information
such as whether the link is broken, external, absolute, or relative. The UrlParser will take
in the URL of the link and return to the builder pertinent information regarding the URL.

Builder:
DataBuilder
The DataBuilder takes URLs from the GUI. It then uses this information to grab the
contents of the URL by calling upon DocFetcher. The DataBuilder then takes the
hyperlinks returned by the DocFetcher, and builds Nodes for each hyperlink. The Node
object will contain all necessary information about the hyperlink obtained from the
UrlParser. Next the DataBuilder puts the Nodes into a WebTree object and will then
repeat the process by calling DocFetcher on the URL of the new Nodes until a limit set
by the user is reached. In addition, DataBuilder is now threaded so that the user won’t
have to wait so long to view the tree. Once the first level of the WebTree is complete, the
user may view it, then when additional sections of the tree are complete, the notifies the
GUI, and a ‘plus’ symbol will appear by a node which now contains more information.

Data Structure:
Node
This component is the representation of an individual document or html of a web site.
Nodes which represent a html will, of course, contain other documents or links, and so
those Nodes with links to other Nodes that represent the documents and HTMLs inside
that Node. On a side note, Node is accompanied by three additional classes:
NodeComparator, NodeRenderer, and BrokenLink. These classes are merely assistants
to the main Node class. They provide features such as comparing nodes, set the icon of a
node, and classifying if a node represents a broken link or not.



Final SRS/SDS/Project Plan Page 9

WebTree
This component represents the entire structure of a URL. It will take in Node objects and
serve as a means for the GUI to understand the Node structure.

NodeComparator
This component is a comparator created to compare two Nodes if one is less than, equal
to, or greater than another Node. This is used mainly in sorting the hyperlinks obtained.

NodeRenderer
This component used by the JTree to render the icon images in the layout window of the
GUI. It also sets the Tool-Tip text based on the Node information.

BrokenLink
This class holds information about each broken link encountered. This is created in the
DataBuilder, and is used by theBroken Linkstab window on the GUI.

Figure 5. Object Model of System components

class: DataBuilder

Breadth

RootNode

WebTree

mapSite()

newMap()

getWebTree()

searchComplete()

searchStatus()

updateTree()

Class: Node

ParentNode

URL

ContentType

DocHTMLSet

DocOthersSet

DocImageSet

isLeaf()

addChild()

getIndex()

hasParent()

hasChildren()

getURL()

getParent()

getChildren()

getChild()

class: WebTree

RootNode

getRoot()

isLeaf()

getParent()

getIndexOfChild()

getChild()

class: MapsterGUI

DataBuilder

JButtons

JComponents

JTree

buildMapster()

actionListener()

Class: UrlParser

URL

isURLAccessible()

isURLInternal()

parseURL()

class: DocFetcher

URL

Links

getLinks()

class: BrokenLink

brokenURL

inPage

equals()

getBroken()

getInPage()

class:
NodeComparator

compare()

equals()

class: NodeRenderer

icoBroken

icoDocs

icoExtLinks

icoHTML

icoImage

icoPath

icoSecure

getTreeCellRenderer
Component()

extractImageType()



Final SRS/SDS/Project Plan Page 10

Graphical User Interface (GUI):
MapsterGUI
This is the most important part of theMapstersoftware program, since it is what interacts
with the user. The GUI takes information from the user, such as the URL and the breadth
size of the web site mapping. In addition, the user can dynamically view sections of the
web site as shown in Figure 1 of the SRS (Page 3). There is also a separate window to
display broken hyperlinks and the summary of links, which the Builder module keeps
track of. In addition, user buttons, such asClear will reset all data in the Builder, and
Map Sitewill begin a new web site mapping by sending a new URL to the DataBuilder.

Changes to the Original Design
Originally it was believed that freeware API could be used in the construction ofMapster,
particularly for retrieving and parsing html documents. However, after thorough consideration
and vigorous testing, all members ofBlitz agreed that the freeware APIs and components under
consideration could not perform any of the necessary tasks to our satisfaction. Thus, modules
such as Fetcher, Builder, and Data Structure went through a redesign phase in order to make
accommodations for the change in html parsing.

Organization Principles
The overall organization of the system modules is based on a structural pattern. In this design
pattern the primary concern with the system is how the modules will be composed to create the
main system. Since there are four primary modules, the structure is composed of many
components grouped inside modules, this allows related components to communicate easily, and
provides an easy way to modify one component without affecting the other components.

As for the organization of the building process,Blitz uses the Spiral Process model as shown in
the Project Plan (page 11). While time is a major constraint, it was a necessity to have a process,
which allows for revisiting the software requirements and design. During some phases of
redesigning, it was not necessary to change the entire system; only problem modules need
modification. Thus, the system design allowed for flexibility during the development.

Rationale
The design of this system benefits both the client as well as developers. The system, being
comprised of four main separate modules, enablesBlitz to develop the modules in parallel. Thus,
the modules were built by separate programmers, which made delivering the system on time
possible. This resulted in the client receiving the system in a short amount of time, as opposed to
the system being built one piece at a time.

The issue of reusing freeware code for this project is an example in favor of the system design.
Originally, it was believed that reusing freeware code would take the place of the Fetcher module
of Mapster. However, when it turned out that the freeware code was not performing to
expectations, a total rewrite of the system was not necessary. In fact, only the Fetcher module
had to be reworked. Thus, with the use of modules, it is relatively easy to replace, test, and
modify individual components without affecting other components.



Final SRS/SDS/Project Plan Page 11

In summary, due to the design, testing was performed on the individual components before the
final system integration, to help ensure the quality of the product. In addition, if developers want
to add additional functionality to the system, it can be done in a clean and easy manner, such as
explained in the previous paragraph. Additional modules can be added to system, or a particular
component can be modified without having to change the entire system.



Final SRS/SDS/Project Plan Page 12

Project Plan

Project Organization

Organizational Structure
Blitz was coordinated and directed by the project manager, Jason Prideaux, who is also
responsible for administrating the project schedule.Blitz made decisions unanimously — all
decisions were considered thoroughly and clearly, and agreed on by everyBlitz team members.

Team Responsibilities
Blitz’s responsibilities were divided into seven team roles: project manager, quality control,
system architect, technical documentation, user documentation, user interface, and configuration
control. Each role is assigned in favor of the members’ skills and experiences. There were at
least 2 members assigned to each role. This ensured that when the primary member faced any
difficulties in the role, the secondary member was be able to help solve the problem. Table 2
presents the members’ roles and responsibilities foreach task.

In addition, for the roles of programming, the team divided into two groups. The GUI was one
large programming task and was tackled by Kaz and Willy. Jason and Christian programmed the
other three modules, being so tightly connected. Having teams of two working on system
components aided in the development process greatly. The ideas of the two-person teams helped
to avoid brain-freezes, and resulted in a faster generation of ideas. This led to an extreme-
programming approach where much of the functionality of modules was determined during the
development process of the software.

Roles Primary Secondary

Project Manager Jason Prideaux Christian Tan

Quality Control Hirokazu Yoshimura Jason Prideaux

System Architect Jason Prideaux Willy Suhali

Technical Documentation Christian Tan Hirokazu Yoshimura

User Documentation Willy Suhali Christian Tan

User Interface Hirokazu Yoshimura Willy Suhali

Configuration control Christian Tan Jason Prideaux

Table 2. Team Role Assignments

Team Communication
Blitz had meetings at least 3-5 times a week, and towards the last two weeks before completion,
the meetings were held daily. The meetings were held at the EMU International Resource Center
and at the Deschutes computer lab. The progress report was checked against the project plan and
milestones, and wasupdated accordingly during the meetings or via E-mail by the primary and
secondary Project Managers.



Final SRS/SDS/Project Plan Page 13

Risk Analysis and Risk Reduction Strategies
Risks are prevalent in software development and may impedeBlitz from delivering the software
on time. To solve this matter,Blitz used risk analysis and risk reduction strategies. Table 3
presents some possible risks that might and did occur during the development, and the
corresponding plans to handle those risks.

Risk Probability Effects Strategy
Falling behind the
schedule

High
(happened)

Serious Delivering regularly and as soon as possible;
milestone are strictly enforced. The Project
Manager keep the team as focused as possible.

Loss of a team
member.

Moderate Serious Assigning two members for each task, the
secondary member will still be working on the
task if the primary person got sick or leaves the
team.

Diverging away
from the
requirements

High
(happened)

Serious Try to come out with prototype early, use the
spiral model software process. The design of the
system underwent many changes. Working
overtime was necessary to overcome this hurdle.

Conflict between
team members

High
(happened)

Serious Manage conflicts constructively; try to make a
unanimous decision or consult a higher
authority, such as the Professor. After
thoughtful consideration by all members, all
conflicts were managed.

Table 3. Risk Analysis and Risk Reduction

Work Breakdown and Project Schedule

Milestones
The project had thirteen main milestones as described in Table 4 below, some of which contain
multiple tasks to be completed. The Progress Report on the last page shows the dates of actual
completion. When the actual coding began, several problems were encountered (such as the
freeware API discussed in the SDS) and as a result the milestones after Jan 24 were subsequently
delayed.

Milestones Dates

Start the project plan Jan 14, 2002

Finalize SRS/SDS/Project Plan Jan 16, 2002

Preparing presentation material Jan 20, 2002

Begin construction on GUI module

Begin construction on WebTree module

Begin construction on Node module

Begin construction on Tree Builder module

Jan 20, 2002

Complete GUI module

Complete WebTree module

Complete Node module

Complete Tree Builder module

Jan 24, 2002



Final SRS/SDS/Project Plan Page 14

Testing of all 4 modules separately Jan 25, 2002

Integrating the 4 modules into one system Jan 26, 2002

Testing of the entire system Jan 27, 2002

Finalizing and getting a deliverable system Jan 29, 2002

Finishing user documentation and technical documentation Jan 30, 2002

Finalizing the SDS/SRS/Project plan Jan 31, 2002

Product delivered Feb 4, 2002

Final presentation Feb 5, 2002

Table 4. Project Milestones

Project Process Breakdown
The software process for this project followed a Spiral Process (See Figure 6). There was six
main phases in the development of the software, however, given the high possibility in change of
requirements or design, it is quite possible that some of these phases will be revisited. In fact,
many of these phases were revisited and explained in the following descriptions of each process
phase.

Figure 6. The Spiral Process Model

Planning
The planning phase included: setting up the project schedule, delegating responsibilities/roles,
and defining the problem statement for this project.



Final SRS/SDS/Project Plan Page 15

Requirement analysis
The requirement analysis phase included analyzing the problem statement to create our list of
requirements as described in the SRS. The list of requirements was then used to describe the
design of the system. This phase of our process was visited more than once, but only in order to
make the requirements of the system more specific, and to remove any ambiguity.

Design
The design phase included: creating a system architecture, identifying our 4 main modules and
sub-components, and specifying when modules should be built and by whom. This phase was
revisited quite often throughout the project timeline. The design of the User Interface went
through many internal changes, relating to how to program the desired features. Also as
discussed in the SDS page 10, the reuse of code that was in the original design, was omitted.
This resulted in a major redesign of the Data Structure, and Data Builder modules.

Development
At this phase, every group member had a very specific programming task, and through regular
meetings, the progress of each group member was monitored. At a scheduled date, all code was
integrated to create the system. In addition, during this phase is when the requirement and
design phases where revisited. Problems, such as the reuse of code would be discovered in this
phase, and thus requirements or design features would be updated accordingly.

Testing
Testing was to be done by individual group members at the completion of his or her module.
After integration of the system two group members performed module testing.

Delivery
Once the system was completed, all group member were given a short amount of time to test,
review the system, as well as add or change parts of it.

Monitor and Report Progress
Blitz kept a record of each task assigned, to whom the task was assigned, when they it was
assigned, the scheduled due date of the task, and when the task was completed.Blitz’s members
signed off on the progress report when each task was completed and verified by the other
members.

The following table is the list of tasks that were required to create software system. This is
similar to the intended schedule of milestones in Table 4., but it differs in that some dates of
tasks were not met, which delayed many of the succeedingmilestones.

Task Assigned to and
completed by

Date
assigned

Scheduled
completion

Actual
Completion

Meeting: Start SRS/SDS/Project plan ALL Jan 14 Jan 14 Jan 14



Final SRS/SDS/Project Plan Page 16

Finalize SRS Christian Jan 14 Jan 17 Jan 20

Finalize SDS Jason Jan 14 Jan 17 Jan 20

Finalize Project Plan Willy Jan 14 Jan 17 Jan 20

Meeting: gather SRS/SDS/Project plan ALL Jan 17 Jan 17 Jan 17

Finalize Presentation materials Kaz Jan 17 Jan 21 Jan 22

Meeting: Prepare for presentation ALL Jan 22 Jan 22 Jan 22

Design system architecture Jason Jan 17 Jan 22 Jan 22

Meeting: delegate programming tasks ALL Jan 22 Jan 22 Jan 22

Begin the GUI Kaz/Willy Jan 22 Jan 25 Jan 25

Begin DataBuilder/Fetcher Jason Jan 22 Jan 25 Jan 25

Begin Data Structure components
(Node, WebTree)

Christian Jan 22 Jan 25 Jan 25

Meeting: review progress ALL Jan 25 Jan 25 Jan 25

Meeting: review progress/prototypes ALL Jan 28 Jan 28 Jan 28

Compete GUI Kaz/Willy Jan 28 Jan 31 Feb

Begin User Documentation Kaz/Willy Jan 28 Feb 1 Feb

Compete Fetcher/Builder Jason Jan 28 Feb 1 Feb

Complete Node/WebTree Christian Jan 28 Jan 31 Jan 31

Integration of the 4 modules Jason/Christian Jan 30 Jan 30 Jan 31

Testing of the entire system ALL Jan 30 Feb 1 Feb 2

Finalizing the SDS/SRS/Project plan Jason/Christian Jan 30 Feb 4 Feb 4

Finishing user documentation Kaz/Willy Jan 30 Feb 2 Feb 4

Beginning & finishing technical
documentation

Christian Jan 31 Feb 3 Feb 4

Finalizing and getting a deliverable
system

Jason/Christian Feb 1 Feb 3 Feb 4

Product delivered ALL Feb 4 Feb 4 Feb 4

Final presentation ALL Feb 5 Feb 5 Feb 5

Table 5. Project Tasks


