
 
Floating Weather Station Module Guide*1

 
 
This guide to the modules of the Floating Weather Station Family is patterned after the 
A-7E Module Guide [6] and uses the structuring principles describe therein and in [41]. 
Accordingly, we quote, with suitable emendations, including the substitution of FWS for 
A-7, a section of the A-7 module guide to describe further the purpose of the FWS 
module guide.  
 
  The FWS module guide provides an orientation for software engineers who are 

new to the FWS family, explains the principles used to design the structure, and 
shows how responsibilities are allocated among the major modules. 

 
  This guide is intended to lead a reader to the module that deals with a particular 

aspect of the system. It states the criteria used to assign a particular responsibility 
to a module and arranges the modules in such a way that a reader can find the 
information relevant to his purpose without searching through unrelated 
documentation. 

 
  This guide describes and prescribes the module structure. Changes in the structure 

will be promulgated as changes to this document. Changes are not official until 
they appear in that form. This guide is a rationalization of the structure, not a 
description of the design process that led to it. 

 
  Each module consists of a group of closely related programs. The module 

structure is the decomposition of the program into modules and the assumptions 
that the team responsible for each module is allowed to make about the other 
modules. 

 
Goals of the Module Structure 

 
The overall goal of the decomposition into modules is reduction of software cost by 
allowing modules to be designed, implemented, and revised independently. Specific 
goals of the module decomposition are: 

 
(1) each module’s structure should be simple enough that it can be understood 

fully; 
 
(2) it should be possible to change the implementation of one module without 

knowledge of the implementation of other modules and without affecting 
the behavior of other modules; 

 

                                                           
1 The FWS Module Guide is taken, with permission, from Engineering Domains: A Family Based Software 
Development Process, David M. Weiss and Chi Tau Robert Lai, Addison Wesley, in publication. 



(3) the ease of making a change in the design should bear a reasonable 
relationship to the likelihood of the change being needed; it should be 
possible to make likely changes without changing any module interfaces; 
less likely changes may involve interface changes, but only for modules that 
are small and not widely used. Only very unlikely changes should require 
changes in the interfaces of widely used modules. There should be few 
widely used interfaces; 

 
(4) it should be possible to make a major software change as a set of 

independent changes to individual modules, i.e., except for interface 
changes, programmers changing the individual modules should not need to 
communicate. If the interfaces of the modules are not revised, it should be 
possible to run and test any combination of old and new module versions. 
 

As a consequence of the goals above, the FWS software is composed of many small 
modules. They have been organized into a tree-structured hierarchy; each non-terminal 
node in the tree represents a module that is composed of the modules represented by its 
descendents. The hierarchy is intended to achieve the following additional goals: 

 
(5) A software engineer should be able to understand the responsibility of a 

module without understanding the module's internal design. 
 

(6) A reader with a well-defined concern should easily be able to identify the 
relevant modules without studying irrelevant modules. This implies that the 
reader be able to distinguish relevant modules from irrelevant modules 
without looking at their internal structure. 

Design Principle 
 

The FWS module structure is based on the decomposition criteria known as information 
hiding [35]. According to this principle, system details that are likely to change 
independently should be the secrets of separate modules; the only assumptions that 
should appear in the interfaces between modules are those that are considered unlikely to 
change. Every data structure is private to one module; it may be directly accessed by one 
or more programs within the module but not by programs outside the module. Any other 
program that requires information stored in a module's data structures must obtain it by 
calling module programs. 

 
Applying this principle is not always easy. It is an attempt to minimize the expected cost 
of software and requires that the designer estimate the likelihood of changes. Many of the 
changes that are accommodated by the module structure described in this document are 
guided by the variabilities described in the Floating Weather Station Commonality 
Analysis. 
 



Module Description 
This document describes the module structure by characterizing each module's secrets. 
Where useful, we also include a brief description of the services provided by the module. 
Where a module's secret is directly concerned with a variability from the commonality 
analysis, we also identify the variability. 
 
The remainder of this document consists of two parts: 

• a top-down overview of the module structure, and 
• a graphical depiction of the module structure. 

 
1. Behavior Hiding Modules 
The behavior hiding modules include programs that need to be changed if the required 
outputs from a FWS and the conditions under which they are produced are changed. Its 
secret is when (under what conditions) to produce which outputs. Programs in the 
behavior hiding module use programs in the Device Interface module to produce outputs 
and to read inputs. 

1.1. Controller 
Service 

Provide the main program that initializes a FWS.  
Secret 

How to use services provided by other modules to start and maintain the proper 
operation of a FWS. 

Associated Changes 
 Period at which the wind temperature sensors are read 
 Period at which the water temperature sensors are read 

[While we anticipate that these may change independently, these issues can be easily 
separated in the module without adding complexity.] 

1.2. Message Generation 
Service 

Periodically retrieve weather data from the Data Banker and transmit it. 
 
Secret 

How to use services provided by other modules to obtain weather data and transmit it 
at a fixed period. 

 
Associated Changes 
 [9] Transmission Period  



1.3. Message Format 

Service 
Support construction of an output message.  
 

Secret 
How to create a message in the correct format for transmission.  
 

Associated Changes 
Message format  
[3] Number and kinds of weather data [Assume the format will change when the 
number and kinds of data changes.] 

 

2. Device Interface Modules 
The device interface modules consist of those programs that need to be changed if the 
hardware devices to FWSs or the output to hardware devices from FWSs change. The 
input from secret of the device interface modules is the interfaces between FWSs and the 
devices that produce its inputs and that use its output. 

2.1. Wind Temperature Device Driver 
Service 

Provide access to the wind temperature sensors. Provide wind temperature values and 
an indicator if a sensor has failed. There may be a submodule for each sensor type.  
 

Secret 
How to communicate with, e.g., read values from, the sensor hardware. 
How to determine if a wind temperature sensor has failed [We assume that this will 
change when the device changes] 

 
Associated Changes 

[2.1] Wind speed sensor hardware.  

2.2. Water Temperature Device Driver 
Service 

Provide access to the water temperature sensors. Provide water temperature values 
and an indicator if a sensor has failed.  There may be a submodule for each sensor 
type.  
 

Secret 
How to communicate with, e.g., read values from, the water temp sensor hardware.  
How to determine if a water temperature sensor has failed. [We assume that this will 
change when the device changes] 

 
Associated changes 
 [2.2] Water temperature hardware 



2.3. Transmitter Device Driver 
Service 

Transmit weather data upon request.  
 

Secret 
The details of the transmitter hardware.  
 

Associated variabilities and parameters of variation 
[4] Transmitter hardware.  
 

Note 
This module hides the boundary between the FWS domain and the radio transmission 
domain. The boundary is formed by an abstract interface that is a standard for all 
radio transmitters. Programs in this module use the abstract interface to send 
messages to the transmitter to be broadcast. 

3. Software Design Hiding Modules 
 
The software design hiding modules hide software design decisions based upon 
programming considerations such as algorithmic efficiency. Both the secrets and the 
interfaces to this module are determined by software designers. Changes in these modules 
are more likely to be motivated by a desire to improve performance than by externally 
imposed changes. 

3.1. Wind Temperature Sensor Monitor 
Service 

Retrieve data from the wind temperature sensor(s) and deposit valid data it in the 
Data Banker. 
 

Secret 
How to use the services provided by other modules to obtain wind temperature data 
at and store it for later retrieval. 
How data from failed sensors is handled. 
 

Associated Changes 
[2?] Number of wind temperature sensors 

3.2. Water Temperature Sensor Monitor 
Service 

Retrieve data from the water temperature sensor(s) and deposit it in the Data Banker. 
 

Secret 
How to use the services provided by other modules to obtain water temperature data 
and store it for later retrieval. 



How data from failed water temperature sensors is handled. 
 

Associated Changes 
[2?] Number of water temperature sensors 

3.3. Data Banker 

Service 
Store wind temperature and water temperature data.  

Secret 
The algorithm and data structure used to store and retrieve data 

Associated Changes 
None 

3.3. Determine Wind Temperature  
Service 

Process the current Data Banker data to produce a current wind temperature estimate. 
Deposit in the Data Banker. 

Secret 
The algorithm used. 

Associated Changes 
[7, 8] Algorithm for accurizing wind temperature from a history of readings. 
 

3.3. Determine Water Temperature  
Service 

Process the current Data Banker data to produce a current water temperature 
estimate. Deposit in the Data Banker. 

Secret 
The algorithm used to estimate the water temperature from stored values. 
 

Associated Changes 
 [7, 8] Algorithm for accurizing water temperature from a history of readings. 

4. Issues 
Issue  1: Should the decisions of how often to read sensors and how many sensors there 

are be hidden in one module? 
 

Al: No. These are two distinct parameters of variation that can change independently 
and as independent decisions they should be hidden in different modules. In this 
structure we would have a sensor monitor module and a sensor reader module. (There 
could be one instance of the sensor reader module per sensor.) The sensor monitor 
module's responsibility is to inform the sensor reader module(s) what the 
SensorPeriod is. This could be done by the use of a SENSORPERIOD constant 



supplied at compile time to different instances of the sensor reader modules. Each 
instance could be implemented as a process. Each sensor reader module is then 
responsible for walling up at the specified period, reading its sensor, and storing its 
reading in the data banker for later retrieval. The sensor monitor module then 
becomes a module that runs at or before compile time. 
A2: Yes. The decisions are not as independent as they appear. Because of timing 
constraints, adding sensors means that the program may not have time to read sensors 
as often. In this structure we would have a sensor monitor module and a sensor reader 
module. (There could be one instance of the sensor reader module per sensor.) The 
sensor monitor module's responsibility is to obtain sensor data from the sensor reader 
modules. The sensor reader module's responsibility is to provide sensor data when it 
is invoked. 

Resolution: 
Alternative Al: would give us more independence in changing the values for 
SensorCount and SensorPeriod, except that we would still have to recalculate the system 
timing when we changed either. It might require slightly less run-time code, and would 
probably increase the amount of process switching overhead. Since SensorCount and 
SensorPeriod are not as independent of each other as we would like because of their joint 
effect on system timing, and since alternative A2 may require less process switching, we 
will choose A2. 
 
 
 
 
 



 
  Controller ([1] Other Sensors) 
 Behavior 
 Hiding Message Generation ([9] Transmission period) 
   
  Message Format ([3] Kinds of weather data) 
 

   Wind Temp Device Driver ([2] Wind temp sensor) 
EWS  Device     
 Interface  Water Temp Device Driver ([2] Water temp sensor) 
        
    Transmitter Device Driver ([4] Transmitter hardware) 
 
    Wind Sensor Monitor ([2?] no. of sensors, failure alg) 
 
    Water Sensor Monitor ([2?] no. of sensors, failure alg) 

Software   
 Design Hiding  Data Banker 
      
     Determine Wind Temp ([7,8] Wind avg algorithm) 
    
     Determine Water Temp ([7,8] Water avg algorithm) 

 
 

FIGURE 1. Floating Weather Station Module Hierarchy with Mapping to Changes 


	Design Principle
	Module Description
	1.1. Controller
	1.2. Message Generation
	1.3. Message Format

	2. Device Interface Modules
	2.1. Wind Temperature Device Driver
	2.2. Water Temperature Device Driver
	2.3. Transmitter Device Driver

	3. Software Design Hiding Modules
	3.1. Wind Temperature Sensor Monitor
	3.2. Water Temperature Sensor Monitor
	3.3. Data Banker
	3.3. Determine Wind Temperature
	3.3. Determine Water Temperature

	4. Issues

