
Chapter 1

Software Test and Analysis in a
Nutshell

Before considering individual aspects and techniques of software analysis and testing,
it is useful to view the “big picture” of software quality in the context of a software
development project and organization. The objective of this chapter is to introduce the
range of software verification and validation activities and a rationale for selecting and
combining them within a software development process. This overview is necessarily
cursory and incomplete, with many details deferred to subsequent chapters.

1.1 Engineering Processes and Verification
Engineering disciplines pair design and construction activities with activities that check
intermediate and final products so that defects can be identified and removed. Software
engineering is no exception: Construction of high quality software requires comple-
mentary pairing of design and verification activities throughout development.

Verification and design activities take various forms ranging from those suited to
highly repetitive construction of non-critical items for mass markets to highly cus-
tomized or highly critical products. Appropriate verification activities depend on the
engineering discipline, the construction process, the final product, and quality require-
ments.

Repetition and high levels of automation in production lines reduce the need for
verification of individual products. For example, only a few key components of prod-
ucts like screens, circuit boards, and toasters are verified individually. The final prod-
ucts are tested statistically. Full test of each individual product may not be economical,
depending on the costs of test, the reliability of the production process, and the costs
of field failures.

Even for some mass market products, complex processes or stringent quality re-
quirements may require both sophisticated design and advanced product verification
procedures. For example, computers, cars, and aircraft, despite being produced in se-
ries, are checked individually before release to customers. Other products are not built

3



4 Software Test and Analysis in a Nutshell

in series, but are engineered individually through highly evolved processes and tools.
Custom houses, race cars, and software are not built in series. Rather, each house,
each racing car, and each software package is at least partly unique in its design and
functionality. Such products are verified individually both during and after production
to identify and eliminate faults.

Verification of goods produced in series, e.g., screens, boards, or toasters, consists
in repeating a predefined set of tests and analyses that indicate whether the products
meet the required quality standards. In contrast, verification of a unique product, such
as a house, requires the design of a specialized set of tests and analyses to assess the
quality of that product. Moreover, the relationship between the test and analysis results
and the quality of the product cannot be defined once for all items, but must be assessed
for each product. For example, the set of resistance tests for assessing the quality of
a floor must be customized for each floor, and the resulting quality depends on the
construction methods and the structure of the building.

The difficulty of verification grows with the complexity and variety of the products.
Small houses built with comparable technologies in analogous environments can be
verified with standardized procedures. The tests are parameterized to the particular
house, but are nonetheless routine. Verification of a skyscraper or of a house built
in an extreme seismic area, on the other hand, may not be easily generalized, instead
requiring specialized tests and analyses designed particularly for the case at hand.

Software is among the most variable and complex of artifacts engineered on a reg-
ular basis. Quality requirements of software used in one environment may be quite
different and incompatible with quality requirements of a different environment or ap-
plication domain, and its structure evolves and often deteriorates as the software system
grows. Moreover, the inherent non-linearity of software systems and uneven distribu-
tion of faults complicates verification. If an elevator can safely carry a load of 1000 kg,
it can also safely carry any smaller load, but if a procedure correctly sorts a set of 256
elements, it may fail on a set of 255 or 53 or 12 elements, as well as on 257 or 1023.

The cost of software verification often exceeds half the overall cost of software de-
velopment and maintenance. Advanced development technologies and powerful sup-
porting tools can reduce the frequency of some classes of errors, but we are far from
eliminating errors and producing fault-free software. In many cases new development
approaches introduce new subtle kinds of faults, which may be more difficult to reveal
and remove than classic faults. This is the case, for example, with distributed software,
which can present problems of deadlock or race conditions that are not present in se-
quential programs. Likewise, object-oriented development introduces new problems
due to the use of polymorphism, dynamic binding and private state that are absent or
less pronounced in procedural software.

The variety of problems and the richness of approaches make it challenging to
choose and schedule the right blend of techniques to reach the required level of quality
within cost constraints. There are no fixed recipes for attacking the problem of verify-
ing a software product. Even the most experienced specialists do not have pre-cooked
solutions, but need to design a solution that suits the problem, the requirements, and
the development environment.

Draft version produced October 21, 2006



Basic Questions 5

1.2 Basic Questions
To start understanding how to attack the problem of verifying software, let us consider
a hypothetical case. The Board of Governors of Chipmunk Computers, an (imaginary)
computer manufacturer, decides to add new on-line shopping functions to the company
web presence to allow customers to purchase individually configured products. Let us
assume the role of quality manager. To begin, we need to answer a few basic questions:

• When do verification and validation start? When are they complete?

• What particular techniques should be applied during development of the product
to obtain acceptable quality at an acceptable cost?

• How can we assess the readiness of a product for release?

• How can we control the quality of successive releases?

• How can the development process itself be improved over the course of the cur-
rent and future projects to improve products and make verification more cost-
effective?

1.3 When do verification and validation start and end?
Although some primitive software development processes concentrate test and analysis
at the end of the development cycle, and the job title “tester” in some organizations
still refers to a person who merely executes test cases on a complete product, today
it is widely understood that execution of tests is a small part of the verification and
validation process required to assess and maintain the quality of a software product.

Verification and validation start as soon as we decide to build a software product, or
even before. In the case of Chipmunk Computers, when the Board of Governors asks
the IT manager for a feasibility study, the IT manager considers not only functionality
and development costs, but also the required qualities and their impact on the overall
cost.

The Chipmunk software quality manager participates with other key designers in
the feasibility study, focusing in particular on risk analysis and the measures needed to
assess and control quality at each stage of development. The team assesses the impact
of new features and new quality requirements on the full system and considers the con-
tribution of quality control activities to development cost and schedule. For example,
migrating sales functions into the Chipmunk web site will increase the criticality of
system availability and introduce new security issues. A feasibility study that ignored
quality could lead to major unanticipated costs and delays and very possibly to project
failure.

The feasibility study necessarily involves some tentative architectural design, e.g.,
a division of software structure corresponding to a division of responsibility between a
human interface design team and groups responsible for core business software (“busi-
ness logic”) and supporting infrastructure, and a rough build plan breaking the project
into a series of incremental deliveries. Opportunities and obstacles for cost-effective

Draft version produced October 21, 2006



6 Software Test and Analysis in a Nutshell

verification are important considerations in factoring the development effort into sub-
systems and phases, and in defining major interfaces.

Overall architectural design divides work and separates qualities that can be verified
independently in the different subsystems, thus easing the work of the testing team as
well as other developers. For example, the Chipmunk design team divides the system
into a presentation layer, back-end logic, and infrastructure. Development of the three
subsystems is assigned to three different teams with specialized experience, each of
which must meet appropriate quality constraints. The quality manager steers the early
design toward a separation of concerns that will facilitate test and analysis.

In the Chipmunk web presence, a clean interface between the presentation layer
and back end logic allows a corresponding division between usability testing (which
is the responsibility of the human interface group, rather than the quality group) and
verification of correct functioning. A clear separation of infrastructure from business
logic serves a similar purpose. Responsibility for a small kernel of critical functions is
allocated to specialists on the infrastructure team, leaving effectively checkable rules
for consistent use of those functions throughout other parts of the system.

Taking into account quality constraints during early breakdown into subsystems
allows for a better allocation of quality requirements and facilitates both detailed design
and testing. However, many properties cannot be guaranteed by one subsystem alone.
The initial breakdown of properties given in the feasibility study will be detailed during
later design and may result in “cross quality requirements” among subsystems. For
example, to guarantee a given security level, the infrastructure design team may require
the verification of absence of some specific security holes, e.g., buffer overflow, in other
parts of the system.

The initial build plan also includes some preliminary decisions about test and anal-
ysis techniques to be used in development. For example, the preliminary prototype
of Chipmunk online sales functionality will not undergo complete acceptance testing,
but will be used to validate the requirements analysis and some design decisions. Ac-
ceptance testing of the first release will be primarily based on feedback from selected
retail stores, but will also include complete checks to verify absence of common secu-
rity holes. The second release will include full acceptance test and reliability measures.

If the feasibility study leads to a project commitment, verification and validation ac-
tivities will commence with other development activities, and like development itself
will continue long past initial delivery of a product. Chipmunk’s new web-based func-
tions will be delivered in a series of phases, with requirements reassessed and modified
after each phase, so it is essential that the V&V plan be cost-effective over a series of
deliveries whose outcome cannot be fully known in advance. Even when the project is
“complete,” the software will continue to evolve and adapt to new conditions, such as
a new version of the underlying data base, or new requirements, such as the opening of
a European sales division of Chipmunk. V&V continues through each small or large
change to the system.

Draft version produced October 21, 2006



What techniques should be applied? 7

Why Combine Techniques?

No single test or analysis technique can serve all purposes. The primary reasons for
combining techniques, rather than choosing a single “best” technique, are

• Effectiveness for different classes of faults. For example, race conditions are
very difficult to find with conventional testing, but they can be detected with
static analysis techniques.

• Applicability at different points in a project. For example, we can apply inspec-
tion techniques very early to requirements and design representations that are not
suited to more automated analyses.

• Differences in purpose. For example, systematic (non-random) testing is aimed
at maximizing fault detection, but cannot be used to measure reliability; for that,
statistical testing is required.

• Tradeoffs in cost and assurance. For example, one may use a relatively expen-
sive technique to establish a few key properties of core components (e.g., a se-
curity kernel) when those techniques would be too expensive for use throughout
a project.

1.4 What techniques should be applied?

The feasibility study is the first step of a complex development process that should lead
to delivery of a satisfactory product through design, verification and validation activi-
ties. Verification activities steer the process towards the construction of a product that
satisfies the requirements by checking the quality of intermediate artifacts as well as
the ultimate product. Validation activities check the correspondence of the intermediate
artifacts and the final product to users’ expectations.

The choice of the set of test and analysis techniques depends on quality, cost,
scheduling and resource constraints in development of a particular product. For the
business logic subsystem, the quality team plans to use a preliminary prototype for
validating requirements specifications. They plan to use automatic tools for simple
structural checks of the architecture and design specifications. They will train staff for
design and code inspections, which will be based on company checklists that identify
deviations from design rules for ensuring maintainability, scalability, and correspon-
dence between design and code.

Requirements specifications at Chipmunk are written in a structured, semi-formal
format. They are not amenable to automated checking, but like any other software ar-
tifact they can be inspected by developers. The Chipmunk organization has compiled
a check-list based on their rules for structuring specification documents and on expe-
rience with problems in requirements from past systems. For example, the check-list
for inspecting requirements specifications at Chipmunk asks inspectors to confirm that
each specified property is stated in a form that can be effectively tested.

Draft version produced October 21, 2006



8 Software Test and Analysis in a Nutshell

The analysis and test plan requires inspection of requirements specifications, design
specifications, source code, and test documentation. Most source code and test docu-
mentation inspections are a simple matter of soliciting an offline review by one other
developer, though a handful of critical components are designated for an additional
review and comparison of notes. Component interface specifications are inspected by
small groups that include a representative of the “provider” and “consumer” sides of
the interface, again mostly offline with exchange of notes through a discussion service.
A larger group and more involved process, including a moderated inspection meeting
with three or four participants, is used for inspection of a requirements specification.

Chipmunk developers produce functional unit tests with each development work
assignment, as well as test oracles and any other scaffolding required for test execution.
Test scaffolding is additional code needed to execute a unit or a subsystem in isolation.
Test oracles check the results of executing the code and signal discrepancies between
actual and expected outputs.

Test cases at Chipmunk are based primarily on interface specifications, but the ex-
tent to which unit tests exercise the control structure of programs is also measured. If
less than 90% of all statements are executed by the functional tests, this is taken as an
indication that either the interface specifications are incomplete (if the missing cover-
age corresponds to visible differences in behavior), or else additional implementation
complexity hides behind the interface. Either way, additional test cases are devised
based on a more complete description of unit behavior.

Integration and system tests are generated by the quality team, working from a
catalog of patterns and corresponding tests. The behavior of some subsystems or com-
ponents is modeled as finite-state machines, so the quality team creates test suites that
exercise program paths corresponding to each state transition in the models.

Scaffolding and oracles for integration testing are part of the overall system archi-
tecture. Oracles for individual components and units are designed and implemented
by programmers using tools for annotating code with conditions and invariants. The
Chipmunk developers use a home-grown test organizer tool to bind scaffolding to code,
schedule test runs, track faults, and organize and update regression test suites.

The quality plan includes analysis and test activities for several properties distinct
from functional correctness, including performance, usability, and security. Although
these are an integral part of the quality plan, their design and execution is delegated in
part or whole to experts who may reside elsewhere in the organization. For example,
Chipmunk maintains a small team of human factors experts in its software division.
The human factors team will produce look-and-feel guidelines for the web purchasing
system, which together with a larger body of Chipmunk interface design rules can be
checked during inspection and test. The human factors team also produces and executes
a usability testing plan.

Parts of the portfolio of verification and validation activities selected by Chipmunk
are illustrated in Figure 1.1. The quality of the final product and the costs of the quality
assurance activities depend on the choice of the techniques to accomplish each activity.
Most important is to construct a coherent plan that can be monitored. In addition to
monitoring schedule progress against the plan, Chipmunk records faults found during
each activity, using this as an indicator of potential trouble spots. For example, if the
number of faults found in a component during design inspections is high, additional

Draft version produced October 21, 2006



How can we assess the readiness of a product? 9

dynamic test time will be planned for that component.

1.5 How can we assess the readiness of a product?
Analysis and testing activities during development are intended primarily to reveal
faults so that they can be removed. Identifying and removing as many faults as possible
is a useful objective during development, but finding all faults is nearly impossible and
seldom a cost-effective objective for a non-trivial software product. Analysis and test
cannot go on forever: Products must be delivered when they meet an adequate level
of functionality and quality. We must have some way to specify the required level of
dependability, and to determine when that level has been attained.

Different measures of dependability are appropriate in different contexts. Availabil-
ity measures the quality of service in terms of running versus down time; mean time
between failures (MTBF) measures the quality of the service in terms of time between
failures, i.e., length of time intervals during which the service is available. Reliability
is sometimes used synonymously with availability or MTBF, but usually indicates the
fraction of all attempted operations (program runs, or interactions, or sessions) that
complete successfully.

Both availability and reliability are important for the Chipmunk web presence. The
availability goal is set (somewhat arbitrarily) at an average of no more than 30 minutes
of down time per month. Since 30 one minute failures in the course of a day would be
much worse than a single 30 minute failure, mean time between failures is separately
specified as at least one week. In addition, a reliability goal of less than 1 failure per
1000 user sessions is set, with a further stipulation that certain critical failures (e.g.,
loss of data) must be vanishingly rare.

Having set these goals, how can Chipmunk determine when it has met them? Mon-
itoring systematic debug testing can provide a hint, but no more than a hint. A product
with only a single fault could be have a reliability of zero if that fault results in a fail-
ure on every execution, and there is no reason to suppose that a test suite designed for
finding faults is at all representative of actual usage and failure rate.

From the experience of many previous projects, Chipmunk has empirically deter-
mined that in their organization, it is fruitful to begin measuring reliability when debug
testing is yielding less than one fault (“bug”) per day of tester time. For some appli-
cation domains, Chipmunk has gathered a large amount of historical usage data from
which to define an operational profile, and these profiles can be used to generate large,
statistically valid sets of randomly generated tests. If the sample thus tested is a valid
model of actual executions, then projecting actual reliability from the failure rate of
test cases is elementary. Unfortunately, in many cases such an operational profile is not
available.

Chipmunk has an idea of how the web sales facility will be used, but it cannot
construct and validate a model with sufficient detail to obtain reliability estimates from
a randomly generated test suite. They decide, therefore, to use the second major ap-
proach to verifying reliability, using a sample of real users. This is commonly known as
alpha testing if the tests are performed by users in a controlled environment, observed
by the development organization. If the tests consist of real users in their own envi-

Draft version produced October 21, 2006



10 Software Test and Analysis in a Nutshell

Requirements 
Elicitation

Requirements 
Specification

Architectural 
Design

Detailed 
Design

Unit Coding
Integration & 

Delivery
Maintenance

Pl
an

 &
 M

on
it

or
V
er

if
y 

Sp
ec

if
ic

at
io

ns
Ex

ec
ut

e 
Te

st
 C

as
es

 &
 V

al
id

at
e 

So
ft

w
ar

e

Identify qualites

Plan acceptance test

Validate specifications

Plan system test

Plan unit & integration test

G
en

er
at

e 
T
es

t 
C
as

es

Inspect architectural design

Analyze architectural design

Inspect detailed design

Monitor the A&T process

Generate system test

Generate integration test

Generate unit test

Generate regression test

Update regression test

Inspect code

Design scaffolding

Design oracles

Execute unit test

Execute integration test

Analyze coverage

Generate structural test

Execute system test

Execute acceptance test

Execute regression test

Collect data on faults

Analyze faults and improve the processIm
pr

ov
e 

Pr
oc

es
s

Figure 1.1: Main analysis and testing activities through the software life cycle.

Draft version produced October 21, 2006



How can we assure the quality of successive releases? 11

ronment, performing actual tasks without interference or close monitoring, it is known
as beta testing. The Chipmunk team plans a very small alpha test, followed by a longer
beta test period in which the software is made available only in retail outlets. To ac-
celerate reliability measurement after subsequent revisions of the system, the beta test
version will be extensively instrumented, capturing many properties of a usage profile.

1.6 How can we assure the quality of successive releases?

Software test and analysis does not stop at the first release. Software products often
operate for many years, frequently much beyond their planned life cycle, and undergo
many changes. They adapt to environment changes, e.g., introduction of new device
drivers, evolution of the operating system, and changes in the underlying data base.
They also evolve to serve new and changing user requirements. Ongoing quality tasks
include test and analysis of new and modified code, re-execution of system tests, and
extensive record-keeping.

Chipmunk maintains a database for tracking problems. This database serves a dual
purpose of tracking and prioritizing actual, known program faults and their resolution
and managing communication with users who file problem reports. Even at initial
release, the database usually includes some known faults, because market pressure sel-
dom allows correcting all known faults before product release. Moreover, “bugs” in the
database are not always and uniquely associated with real program faults. Some prob-
lems reported by users are misunderstandings and feature requests, and many distinct
reports turn out to be duplicates and are eventually consolidated.

Chipmunk designates relatively major revisions, involving several developers, as
“point releases,” and smaller revisions as “patch level” releases. The full quality pro-
cess is repeated in miniature for each point release, including everything from inspec-
tion of revised requirements to design and execution of new unit, integration, system,
and acceptance test cases. A major point release is likely even to repeat a period of
beta testing.

Patch level revisions are often urgent for at least some customers. For example, a
patch level revision is likely when a fault prevents some customers from using the soft-
ware, or when a new security vulnerability is discovered. Test and analysis for patch
level revisions is abbreviated, and automation is particularly important so that a reason-
able level of assurance can be obtained with very fast turnaround. In particular, when
fixing one fault, it is all too easy to introduce a new fault or re-introduce faults that have
occurred in the past. Chipmunk maintains an extensive suite of regression tests to de-
tect these. The Chipmunk development environment supports recording, classification,
and automatic re-execution of test cases. Each point release must undergo complete re-
gression testing before release, but patch level revisions may be released with a subset
of regression tests that run unattended overnight. Developers add new regression test
cases as faults are discovered and repaired.

Draft version produced October 21, 2006



12 Software Test and Analysis in a Nutshell

1.7 How can the development process be improved?
As part of an overall process improvement program, Chipmunk has implemented a
quality improvement program. In the past, the quality team encountered the same
defects in project after project. The quality improvement program tracks and classifies
faults to identify the human errors that cause them and weaknesses in test and analysis
that allow them to remain undetected.

Chipmunk quality improvement group members are drawn from developers and
quality specialists on several project teams. The group produces recommendations that
may include modifications to development and test practices, tool and technology sup-
port, and management practices. The explicit attention to buffer overflow in networked
applications at Chipmunk is the result of failure analysis in previous projects.

Fault analysis and process improvement comprise four main phases: defining the
data to be collected and implementing procedures for collecting it; analyzing collected
data to identify important fault classes; analyzing selected fault classes to identify
weaknesses in development and quality measures; and adjusting the quality and de-
velopment process.

Collection of data is particularly crucial, and often difficult. Earlier attempts by
Chipmunk quality teams to impose fault data collection practices were a dismal fail-
ure. The quality team possessed neither carrots nor sticks to motivate developers under
schedule pressure. An overall process improvement program undertaken by the Chip-
munk software division provided an opportunity to better integrate fault data collection
with other practices, including the normal procedure for assigning, tracking, and re-
viewing development work assignments. Quality process improvement is distinct from
the goal of improving an individual product, but initial data collection is integrated in
the same bug tracking system, which in turn is integrated with the revision and config-
uration control system used by Chipmunk developers.

The quality improvement group defines the information that must be collected for
faultiness data to be useful, and the format and organization of that data. Participation
of developers in designing the data collection process is essential to balance the cost of
data collection and analysis with its utility, and to build acceptance among developers.

Data from several projects over time are aggregated and classified to identify classes
of faults that are important because they occur frequently, because they cause particu-
larly severe failures, or because they are costly to repair. These faults are analyzed to
understand how they are initially introduced and why they escape detection. The im-
provement steps recommended by the quality improvement group may include specific
analysis or testing steps for earlier fault detection, but they may also include design
rules and modifications to development and even management practices. An important
part of each recommended practice is an accompanying recommendation for measuring
the impact of the change.

Summary
The quality process has three distinct goals: Improving a software product (by pre-
venting, detecting, and removing faults), assessing the quality of the software product

Draft version produced October 21, 2006



How can the development process be improved? 13

(with respect to explicit quality goals), and improving the long-term quality and cost-
effectiveness of the quality process itself. Each goal requires weaving quality assurance
and improvement activities into an overall development process, from product incep-
tion through deployment, evolution, and retirement.

Each organization must devise, evaluate, and refine an approach suited to that or-
ganization and application domain. A well-designed approach will invariably combine
several test and analysis techniques, spread across stages of development. An array
of fault detection techniques are distributed across development stages so that faults
are removed as soon as possible. The overall cost and cost-effectiveness of techniques
depends to a large degree on the extent to which they can be incrementally re-applied
as the product evolves.

Further Reading
This book deals primarily with software analysis and testing to improve and assess
the dependability of software. That is not because qualities other than dependability
are unimportant, but rather because they require their own specialized approaches and
techniques. We offer here a few starting points for considering some other impor-
tant properties that interact with dependability. Norman’s Design of Everyday Things
[Nor02b] is a classic introduction to design for usability, with basic principles that
apply to both hardware and software artifacts. A primary reference on usability for in-
teractive computer software, and particularly for web applications, is Nielsen’s Design
Web Usability [Nie99]. Bishop’s text [Bis02] is a good introduction to computer se-
curity. The most comprehensive introduction to software safety is Leveson’s Safeware
[Lev95].

Exercises
1.1. Philip has studied “just-in-time” industrial production methods, and is convinced

that they should be applied to every aspect of software development. He argues
that test case design should be performed just before the first opportunity to
execute the newly designed test cases, never earlier. What positive and negative
consequences do you foresee for this just-in-time test case design approach?

1.2. A newly hired project manager at Chipmunk questions why the quality manager
is involved in the feasibility study phase of the project, rather than joining the
team only when the project has been approved, as at the new manager’s previous
company. What argument(s) might the quality manager offer in favor of her
involvement in the feasibility study?

1.3. Chipmunk procedures call for peer review not only of each source code module,
but also of test cases and scaffolding for testing that module. Anita argues that
inspecting test suites is a waste of time; any time spent on inspecting a test case

Draft version produced October 21, 2006



14 Software Test and Analysis in a Nutshell

designed to detect a particular class of fault could more effectively be spent in-
specting the source code to detect that class of fault. Anita’s project manager,
on the other hand, argues that inspecting test cases and scaffolding can be cost-
effective when considered over the whole lifetime of a software product. What
argument(s) might Anita’s manager offer in favor of this conclusion?

1.4. The spiral model of software development prescribes sequencing incremental
prototyping phases for risk reduction, beginning with the most important project
risks. Architectural design for testability involves, in addition to defining testable
interface specifications for each major module, establishing a build order that
supports thorough testing after each stage of construction. How might spiral
development and design for test be complementary or in conflict?

1.5. You manage an on-line service that sells down-loadable video recordings of clas-
sic movies. A typical down-load takes one hour, and an interrupted down-load
must be restarted from the beginning. The number of customers engaged in
a download at any given time ranges from about 10 to about 150 during peak
hours. On average, your system goes down (dropping all connections) about two
times per week, for an average of three minutes each time. If you can double
availability or double mean time between failures, but not both, which will you
choose? Why?

1.6. Having no a priori operational profile for reliability measurement, Chipmunk
will depend on alpha and beta testing to assess the readiness of their on-line pur-
chase functionality for public release. Beta testing will be carried out in retail
outlets, by retail store personnel and then by customers with retail store person-
nel looking on. How might this beta testing still be misleading with respect to
reliability of the software as it will be used at home and work by actual cus-
tomers? What might Chipmunk do to ameliorate potential problems from this
reliability mis-estimation?

1.7. The junior test designers of Chipmunk Computers are annoyed by the procedures
for storing test cases together with scaffolding, test results and related documen-
tation. They blame the extra effort needed to produce and store such data for
delays in test design and execution. They argue for reducing the data to store
to the minimum required for re-executing test cases, eliminating details of test
documentation and limiting test results to the information needed for generating
oracles.

What argument(s) might the quality manager use to convince the junior test de-
signers of the usefulness of storing all this information?

Draft version produced October 21, 2006



Chapter 2

A Framework for Test &
Analysis

The purpose of software test and analysis is either to assess software qualities or else
to make it possible to improve the software by finding defects. Of the many kinds of
software qualities, those addressed by the analysis and test techniques discussed in this
book are the dependability properties of the software product.

There are no perfect test or analysis techniques, nor a single “best” technique for
all circumstances. Rather, techniques exist in a complex space of trade-offs, and of-
ten have complementary strengths and weaknesses. This chapter describes the nature
of those trade-offs and some of their consequences, and thereby a conceptual frame-
work for understanding and better integrating material from later chapters on individual
techniques.

It is unfortunate that much of the available literature treats testing and analysis
as independent or even as exclusive choices, removing the opportunity to exploit their
complementarities. Armed with a basic understanding of the trade-offs and of strengths
and weaknesses of individual techniques, one can select and combine from an array of
choices to improve the cost-effectiveness of verification.

2.1 Validation and Verification

While software products and processes may be judged on several properties ranging
from time-to-market to performance to usability, the software test and analysis tech-
niques we consider are focused more narrowly on improving or assessing dependabil-
ity.

Assessing the degree to which a software system actually fulfills its requirements,
in the sense of meeting the user’s real needs, is called validation. Fulfilling require- ∆ validation
ments is not the same as conforming to a requirements specification. A specification is
a statement about a particular proposed solution to a problem,1 and that proposed solu-
tion may or may not achieve its goals. Moreover, specifications are written by people,

15



16 A Framework for Test & Analysis

Actual Needs and 
Constraints

Unit/
Component 

Specs

System Test

Integration Test

Module Test

User Acceptance (alpha, beta test)

R
e

vi
e

w

Analysis / 
Review

Analysis / 
Review

User review of external behavior as it is 
determined or becomes visible

Unit/
Components

Subsystem 
Design/Specs

Subsystem

System 
Specifications

System 
Integration

Delivered 
Package

Validation

Verification 

Le
ge

nd

Figure 2.1: Validation activities check work products against actual user requirements,
while verification activities check consistency of work products.

and therefore contain mistakes. A system that meets its actual goals is useful, while a
system that is consistent with its specification is dependable.∆ dependable

“Verification” is checking the consistency of an implementation with a specifica-
tion. Here, “specification” and “implementation” are roles, not particular artifacts. For∆ verification
example, an overall design could play the role of “specification” and a more detailed
design could play the role of “implementation;” checking whether the detailed design
is consistent with the overall design would then be verification of the detailed design.
Later, the same detailed design could play the role of “specification” with respect to

1A good requirements document, or set of documents, should include both a requirements analysis, and
a requirements specification, and should clearly distinguish between the two. The requirements analysis
describes the problem. The specification describes a proposed solution. This is not a book about requirements
engineering, but we note in passing that confounding requirements analysis with requirements specification
will inevitably have negative impacts on both validation and verification.

Draft version produced October 21, 2006



Validation and Verification 17

source code, which would be verified against the design. In every case, though, ver-
ification is a check of consistency between two descriptions, in contrast to validation
which compares a description (whether a requirements specification, a design, or a
running system) against actual needs.

Figure 2.1 sketches the relation of verification and validation activities with respect
to artifacts produced in a software development project. The figure should not be inter-
preted as prescribing a sequential process, since the goal of a consistent set of artifacts
and user satisfaction are the same whether the software artifacts (specifications, design,
code, etc.) are developed sequentially, iteratively, or in parallel. Verification activities
check consistency between descriptions (design and specifications) at adjacent levels
of detail, and between these descriptions and code.2 Validation activities attempt to
gauge whether the system actually satisfies its intended purpose.

Validation activities refer primarily to the overall system specification and the final
code. With respect to overall system specification, validation checks for discrepancies
between actual needs and the system specification as laid out by the analysts, to en-
sure that the specification is an adequate guide to building a product that will fulfill its
goals. With respect to final code, validation aims at checking discrepancies between
actual need and the final product, to reveal possible failures of the development process
and to make sure the product meets end-user expectations. Validation checks between
the specification and final product are primarily checks of decisions that were left open
in the specification, e.g., details of the user interface or product features. Chapter 4 pro-
vides a more thorough discussion of validation and verification activities in particular
software process models.

We have omitted one important set of verification checks from Figure 2.1 to avoid
clutter. In addition to checks that compare two or more artifacts, verification includes
checks for self-consistency and well-formedness. For example, while we cannot judge
that a program is “correct” except in reference to a specification of what it should do,
we can certainly determine that some programs are “incorrect” because they are ill-
formed. We may likewise determine that a specification itself is ill-formed because it
is inconsistent (requires two properties that cannot both be true) or ambiguous (can be
interpreted to require some property or not), or because it does not satisfy some other
well-formedness constraint that we impose, such as adherence to a standard imposed
by a regulatory agency.

Validation against actual requirements necessarily involves human judgment and
the potential for ambiguity, misunderstanding, and disagreement. In contrast, a speci-
fication should be sufficiently precise and unambiguous that there can be no disagree-
ment about whether a particular system behavior is acceptable. While the term “test-
ing” is often used informally both for gauging usefulness and verifying the product, the
activities differ in both goals and approach. Our focus here is primarily on dependabil-
ity, and thus primarily on verification rather than validation, although techniques for
validation and the relation between the two is discussed further in Chapter 22.

Dependability properties include correctness, reliability, robustness, and safety.
Correctness is absolute consistency with a specification, always and in all circum-
stances. Correctness with respect to non-trivial specifications is almost never achieved.

2This part of the diagram is a variant of the well known “V model” of verification and validation.

Draft version produced October 21, 2006



18 A Framework for Test & Analysis

Reliability is a statistical approximation to correctness, expressed as the likelihood
of correct behavior in expected use. Robustness, unlike correctness and reliability,
weighs properties as more and less critical, and distinguishes which properties should
be maintained even under exceptional circumstances in which full functionality can-
not be maintained. Safety is a kind of robustness in which the critical property to be
maintained is avoidance of particular hazardous behaviors. Dependability properties
are further discussed in Chapter 4

2.2 Degrees of Freedom
Given a precise specification and a program, it seems that one ought to be able to
arrive at some logically sound argument or proof that a program satisfies the specified
properties. After all, if a civil engineer can perform mathematical calculations to show
that a bridge will carry a specified amount of traffic, shouldn’t we be able to similarly
apply mathematical logic to verification of programs?

For some properties and some very simple programs, it is in fact possible to obtain
a logical correctness argument, albeit at high cost. In a few domains, logical correct-
ness arguments may even be cost-effective for a few isolated, critical components (e.g.,
a safety interlock in a medical device). In general, though, one cannot produce a com-
plete logical “proof” for the full specification of practical programs in full detail. This
is not just a sign that technology for verification is immature. It is, rather, a conse-
quence of one of the most fundamental properties of computation.

Even before programmable digital computers were in wide use, computing pioneer
Alan Turing proved that some problems cannot be solved by any computer program.undecidability
The universality of computers — their ability to carry out any programmed algorithm,
including simulations of other computers — induces logical paradoxes regarding pro-
grams (or algorithms) for analyzing other programs. In particular, logical contradic-
tions ensue from assuming that there is some program P that can, for some arbitrary
program Q and input I, determine whether Q eventually halts. To avoid those log-halting problem
ical contradictions, we must conclude that no such program for solving the “halting
problem” can possibly exist.

Countless university students have encountered the halting problem in a course
on the theory of computing, and most of those who have managed to grasp it at all
have viewed it as a purely theoretical result that, whether fascinating or just weird, is
irrelevant to practical matters of programming. They have been wrong. Almost every
interesting property regarding the behavior of computer programs can be shown to
“embed” the halting problem, i.e., the existence of an infallible algorithmic check for
the property of interest would imply the existence of a program that solves the halting
problem, which we know to be impossible.

In theory, undecidability of a property S merely implies that for each verification
technique for checking S, there is at least one “pathological” program for which that
technique cannot obtain a a correct answer in finite time. It does not imply that verifi-
cation will always fail or even that it will usually fail, only that it will fail in at least one
case. In practice, failure is not only possible but common, and we are forced to accept
a significant degree of inaccuracy.

Draft version produced October 21, 2006



Degrees of Freedom 19

Optimistic
inaccuracyPessimistic

inaccuracy

Simplified
properties

Typical 
testing 
technique

Perfect verification of 
arbitrary properties by 
logical proof or 
exhaustive testing 
(infinite effort)Theorem proving:

unbounded effort to 
verify general properties

ModelChecking:
decidable but possibly 
intractable checking of 

simple temporal properties

Data flow 
analysis

Precise analysis of 
simple syntactic 

properties

Figure 2.2: Verification tradeoff dimensions

Draft version produced October 21, 2006



20 A Framework for Test & Analysis

Program testing is a verification technique, and is as vulnerable to undecidability
as other techniques. Exhaustive testing, i.e., executing and checking every possible
behavior of a program, would be a “proof by cases,” which is a perfectly legitimate way
to construct a logical proof. How long would this take? If we ignore implementation
details such as the size of the memory holding a program and its data, the answer is
“forever.” That is, for most programs, exhaustive testing cannot be completed in any
finite amount of time.

Suppose we do make use of the fact that programs are executed on real machines
with finite representations of memory values. Consider the following trivial Java class:

1 class Trivial{
2 static int sum(int a, int b) { return a + b; }
3 }

The Java language definition states that the representation of an int is 32 binary
digits, and thus there are only 232 × 232 = 264 ≈ 1021 different inputs on which the
method Trivial.sum() need be tested to obtain a proof of its correctness. At one
nanosecond (10−9 seconds) per test case, this will take approximately 1012 seconds, or
about 30,000 years.

A technique for verifying a property can be inaccurate in one of two directions (Fig-
ure 2.2). It may be pessimistic, meaning that it is not guaranteed to accept a program∆ pessimistic
even if the program does possess the property being analyzed, or it can be optimistic∆ optimistic
if it may accept some programs that do not possess the property (i.e., it may not detect
all violations). Testing is the classic optimistic technique, because no finite number
of tests can guarantee correctness. Many automated program analysis techniques for
properties of program behaviors 3 are pessimistic with respect to the properties they
are designed to verify. Some analysis techniques may give a third possible answer,
“don’t know.” We can consider these techniques to be either optimistic or pessimistic
depending on how we interpret the “don’t know” result. Perfection is unobtainable, but
one can choose techniques that err in only a particular direction.

A software verification technique that errs only in the pessimistic direction is called
a conservative analysis. It might seem that a conservative analysis would always be
preferable to one which could accept a faulty program. However, a conservative anal-
ysis will often produce a very large number of spurious error reports, in addition to a
few accurate reports. A human may, with some effort, distinguish real faults from a
few spurious reports, but cannot cope effectively with a long list of purported faults of
which most are false alarms. Often only a careful choice of complementary optimistic
and pessimistic techniques can help in mutually reducing the different problems of the
techniques and produce acceptable results.

In addition to pessimistic and optimistic inaccuracy, a third dimension of compro-
mise is possible: substituting a property that is more easily checked, or constraining
the class of programs that can be checked. Suppose we want to verify a property S,
but we are not willing to accept the optimistic inaccuracy of testing for S, and the only

3Why do we bother to say “properties of program behaviors” rather than “program properties?” Because
simple syntactic properties of program text, such as declaring variables before they are used or indenting
properly, can be decided efficiently and precisely.

Draft version produced October 21, 2006



Degrees of Freedom 21

A Note on Terminology

Many different terms related to pessimistic and optimistic inaccuracy appear in the
literature on program analysis. We have chosen these particular terms because it is
fairly easy to remember which is which. Other terms a reader is likely to encounter
include:

Safe: A safe analysis has no optimistic inaccuracy, i.e., it accepts only correct pro-
grams. In other kinds of program analysis, safety is related to the goal of the
analysis. For example, a safe analysis related to a program optimization is one
that allows that optimization only when the result of the optimization will be
correct.

Sound: Soundness is a term to describe evaluation of formulas. An analysis of a
program P with respect to a formula F is sound if the analysis returns True only
when the program actually does satisfy the formula. If satisfaction of a formula
F is taken as an indication of correctness, then a sound analysis is the same as a
safe or conservative analysis.

If the sense of F is reversed (i.e., if the truth of F indicates a fault rather than
correctness) then a sound analysis is not necessarily conservative. In that case it
is allowed optimistic inaccuracy but must not have pessimistic inaccuracy. (Note
however that use of the term sound has not always been consistent in the software
engineering literature. Some writers use the term unsound as we use the term
optimistic.)

Complete: Completeness, like soundness, is a term to describe evaluation of formulas.
An analysis of a program P with respect to a formula F is complete if the analysis
always returns True when the program actually does satisfy the formula. If sat-
isfaction of a formula F is taken as an indication of correctness, then a complete
analysis is one which admits only optimistic inaccuracy. An analysis which is
sound but incomplete is a conservative analysis.

Draft version produced October 21, 2006



22 A Framework for Test & Analysis

available static analysis techniques for S result in such huge numbers of spurious error
messages that they are worthless. Suppose we know some property S′ that is a suffi-
cient, but not necessary, condition for S, i.e., the validity of S′ implies S, but not the
contrary. Maybe S′ is so much simpler than S that it can be analyzed with little or
no pessimistic inaccuracy. If we check S′ rather than S, then we may be able to pro-
vide precise error messages that describe a real violation of S′ rather than a potential
violation of S.

Many examples of substituting simple, checkable properties for actual properties
of interest can be found in the design of modern programming languages. Consider,
for example, the property that each variable should be initialized with a value before its
value is used in an expression. In the C language, a compiler cannot provide a precise
static check for this property, because of the possibility of code like the following:

1
2 int i, sum;
3 int first=1;
4 for (i=0; i<10; ++i) {
5 if (first) {
6 sum=0; first=0;
7 }
8 sum += i;
9 }

It is impossible in general to determine whether each control flow path can be
executed, and while a human will quickly recognize that the variable sum is initialized
on the first iteration of the loop, a compiler or other static analysis tool will typically
not be able to rule out an execution in which the initialization is skipped on the first
iteration. Java neatly solves this problem by making code like this illegal, i.e., the rule
is that a variable must be initialized on all program control paths, whether or not those
paths can ever be executed.

Software developers are seldom at liberty to design new restrictions into the pro-
gramming languages and compilers they use, but the same principle can be applied
through external tools, not only for programs but also for other software artifacts. Con-
sider, for example, the following condition that we might wish to impose on require-
ments documents:

(1) Each significant domain term shall appear with a definition in the
glossary of the document.

This property is nearly impossible to check automatically, since determining whether
a particular word or phrase is a “significant domain term” is a matter of human judg-
ment. Moreover, human inspection of the requirements document to check this require-
ment will be extremely tedious and error-prone. What can we do? One approach is to
separate the decision that requires human judgment (identifying words and phrases as
“significant”) from the tedious check for presence in the glossary.

(1a) Each significant domain term shall be shall be set off in the re-
quirements document by the use of a standard style term. The default

Draft version produced October 21, 2006



Varieties of Software 23

visual representation of the term style is a single underline in printed doc-
uments and purple text in online displays.

(1b) Each word or phrase in the term style shall appear with a definition
in the glossary of the document.

Property (1a) still requires human judgment, but it is now in a form that is much
more amenable to inspection. Property (1b) can be easily automated in a way that
will be completely precise (except that the task of determining whether definitions
appearing in the glossary are clear and correct must also be left to humans).

As a second example, consider a web-based service in which user sessions need not
directly interact, but they do read and modify a shared collection of data on the server.
In this case a critical property is maintaining integrity of the shared data. Testing for
this property is notoriously difficult, because a “race condition” (interference between
writing data in one process and reading or writing related data in another process) may
cause an observable failure only very rarely.

Fortunately, there is a rich body of applicable research results on concurrency con-
trol which can be exploited for this application. It would be foolish to rely primarily on
direct testing for the desired integrity properties. Instead, one would choose a (well-
known, formally verified) concurrency control protocol, such as the two-phase lock-
ing protocol, and rely on some combination of static analysis and program testing to
check conformance to that protocol. Imposing a particular concurrency control proto-
col substitutes a much simpler, sufficient property (two-phase locking) for the complex
property of interest (serializability), at some cost in generality, i.e., there are programs
that violate two-phase locking and yet, by design or dumb luck, satisfy serializability
of data access.

It is a common practice to further impose a global order on lock accesses, which
again simplifies testing and analysis. Testing would identify execution sequences in
which data is accessed without proper locks, or in which locks are obtained and re-
linquished in an order that does not respect the two-phase protocol or the global lock
order, even if data integrity is not violated on that particular execution, because the
locking protocol failure indicates the potential for a dangerous race condition in some
other execution which might occur only rarely or under extreme load.

With the adoption of coding conventions that make locking and unlocking actions
easy to recognize, it may be possible to rely primarily on flow analysis to determine
conformance with the locking protocol, with the role of dynamic testing reduced to
a “back up” to raise confidence in the soundness of the static analysis. Note that the
critical decision to impose a particular locking protocol is not a post-hoc decision that
can be made in a testing “phase” at the end of development. Rather, the plan for
verification activities with a suitable balance of cost and assurance is part of system
design.

2.3 Varieties of Software
The software testing and analysis techniques presented in the main parts of this book
were developed primarily for procedural and object-oriented software. While these

Draft version produced October 21, 2006



24 A Framework for Test & Analysis

“generic” techniques are at least partly applicable to most varieties of software, partic-
ular application domains (e.g., real-time and safety-critical software) and construction
methods (e.g., concurrency and physical distribution, graphical user interfaces) call for
particular properties to be verified, or the relative importance of different properties,
as well as imposing constraints on applicable techniques. Typically a software system
does not fall neatly into one category but rather has a number of relevant characteristics
that must be considered when planning verification.

As an example, consider a physically distributed (networked) system for scheduling
a group of individuals. The possibility of concurrent activity introduces considerations
that would not be present in a single-threaded system, such as preserving the integrity
of data. The concurrency is likely to introduce non-determinism, or else introduce an
obligation to show that the system is deterministic, either of which will almost certainly
need to be addressed through some formal analysis. The physical distribution may
make it impossible to determine a global system state at one instant, ruling out some
simplistic approaches to system test and, most likely, suggesting an approach in which
dynamic testing of design conformance of individual processes is combined with static
analysis of their interactions. If in addition the individuals to be coordinated are fire
trucks, then the criticality of assuring prompt response will likely lead one to choose a
design that is amenable to strong analysis of worst-case behavior, whereas an average-
case analysis might be perfectly acceptable if the individuals are house painters.

As a second example, consider the software controlling a “soft” dashboard display
in an automobile. The display may include ground speed, engine speed (rpm), oil
pressure, fuel level, etc., in addition to a map and navigation information from a global
positioning system receiver. Clearly usability issues are paramount, and may even
impinge on safety (e.g., if critical information can be hidden beneath or among less
critical information). A disciplined approach will not only place a greater emphasis
on validation of usability throughout development, but to the extent possible will also
attempt to codify usability guidelines in a form that permits verification. For example,
if the usability group determines that the fuel gauge should always be visible when
the fuel level is below 1

4 tank, then this becomes a specified property that is subject
to verification. The graphical interface also poses a challenge in effectively checking
output. This must be addressed partly in the architectural design of the system, which
can make automated testing feasible or not depending on the interfaces between high-
level operations (e.g., opening or closing a window, checking visibility of a window)
and low-level graphical operations and representations.

Summary
Verification activities are comparisons to determine consistency of two or more soft-
ware artifacts, or self-consistency, or consistency with an externally imposed criterion.
Verification is distinct from validation, which is consideration of whether software ful-
fills its actual purpose. Software development always includes some validation and
some verification, although different development approaches may differ greatly in
their relative emphasis.

Precise answers to verification questions are sometimes difficult or impossible to

Draft version produced October 21, 2006



Varieties of Software 25

obtain, in theory as well as practice. Verification is therefore an art of compromise, ac-
cepting some degree of optimistic inaccuracy (as in testing) or pessimistic inaccuracy
(as in many static analysis techniques) or choosing to check a property which is only
an approximation of what we really wish to check. Often the best approach will not be
exclusive reliance on one technique, but careful choice of a portfolio of test and anal-
ysis techniques selected to obtain acceptable results at acceptable cost, and addressing
particular challenges posed by characteristics of the application domain or software.

Further Reading

The “V” model of verification and validation (of which Figure 2.1 is a variant) appears
in many software engineering textbooks, and in some form can be traced at least as
far back as Myers’ classic book [Mye79]. The distinction between validation and ver-
ification as given here follow’s Boehm [Boe81], who has most memorably described
validation as “building the right system” and verification as “building the system right.”

The limits of testing have likewise been summarized in a famous aphorism, by
Dijkstra [Dij72] who pronounced that “Testing can show the presence of faults, but
not their absence.” This phrase has sometimes been interpreted as implying that one
should always prefer formal verification to testing, but the reader will have noted that
we do not draw that conclusion. Howden’s 1976 paper [How76] is among the earliest
treatments of the implications of computability theory for program testing.

A variant of the diagram in Figure 2.2 and a discussion of pessimistic and optimistic
inaccuracy was presented by Young and Taylor [YT89]. A more formal characteriza-
tion of conservative abstractions in static analysis, called abstract interpretation, was
introduced by Cousot and Cousot in a seminal paper that is, unfortunately, nearly un-
readable [CC77]. We enthusiastically recommend Jones’ lucid introduction to abstract
interpretation [JN95], which is suitable for readers who have a firm general background
in computer science and logic but no special preparation in programming semantics.

There are few general treatments of tradeoffs and combinations of software test-
ing and static analysis, although there are several specific examples, such as work in
communication protocol conformance testing [vBDZ89, FvBK+91]. The two-phase
locking protocol mentioned in Section 2.2 is described in several texts on databases;
Bernstein et al. [BHG87] is particularly thorough.

Exercises

2.1. The Chipmunk marketing division is worried about the start-up time of the cur-
rent version of the RodentOS operating system (an (imaginary) operating system
of Chipmunk), and requires that the new version of RodentOS should not annoy
the user before allowing to start working.

Explain why this simple requirement is not verifiable and try to reformulate the
requirement to make is verifiable.

Draft version produced October 21, 2006



26 A Framework for Test & Analysis

2.2. Let us considered a simple specification language SL that describes systems dia-
grammatically in terms of functions, that represent data transformations and
correspond to nodes of the diagram, and flows, that represent data flows and
correspond to arcs of the diagram.4 Diagrams can be hierarchically refined by
associating a function F (a node of the diagram) with an SL specification that
details function F . Flows are labeled to indicate the type of data.

Suggest some checks for self-consistency for SL.

2.3. A calendar program should provide timely reminders, e.g., it should remind the
user of an upcoming event early enough for the user to take action, but not too
early. Unfortunately, “early enough” and “too early” are qualities that can only
be validated with actual users. How might you derive verifiable dependability
properties from the timeliness requirement?

2.4. It is sometimes important in multi-threaded applications to ensure that a se-
quence of accesses by one thread to an aggregate data structure (e.g., some kind
of table) appears to other threads as an atomic transaction. When the shared data
structure is maintained by a database system, the database system typically uses
concurrency control protocols to ensure atomicity of the transactions it manages.
No such automatic support is typically available for data structures maintained
by a program in main memory.

Among the options available to programmers to ensure serializability (the illu-
sion of atomic access) are:

• The programmer could maintain very coarse-grain locking, preventing any
interleaving of accesses to the shared data structure, even which such inter-
leaving would be harmless. (For example, each transaction could be encap-
sulated in an single synchronized Java method.) This approach can cause a
great deal of unnecessary blocking between threads, hurting performance,
but it is almost trivial to verify either automatically or manually.

• Automated static analysis techniques can sometimes verify serializability
with finer-grain locking, even when some methods do not use locks at all.
This approach can still reject some sets of methods that would ensure seri-
alizability.

• The programmer could be required to use a particular concurrency control
protocol in his code, and we could build a static analysis tool that checks for
conformance with that protocol. For example, adherence to the common
two-phase-locking protocol, with a few restrictions, can be checked in this
way.

• We might augment the data accesses to build a serializability graph struc-
ture representing the “happens before” relation among transactions in test-
ing. It can be shown that the transactions executed in serializable manner
if and only if the serializability graph is acyclic.

4Readers expert of Structured Analysis may have noticed that SL resembles a simple Structured Analysis
specification

Draft version produced October 21, 2006



Varieties of Software 27

Compare these approaches by their relative positions on the three axes of verifi-
cation techniques: pessimistic inaccuracy, optimistic inaccuracy, and simplified
properties.

2.5. When updating a program, e.g., for removing a fault, changing or adding a func-
tionality, programmers may introduce new faults or expose previously hidden
faults. To be sure that the updated version maintains the functionality provided
by the previous version, it is common practice to re-execute the test cases de-
signed for the former versions of the program. Re-executing test cases designed
for previous versions is called regression testing. When testing large complex
programs, the number of regression test cases may be too large, and thus test
designers may need to select a subset of test cases among all test cases that can
be re-executed on the new version.

Subsets of test cases can be selected according to different criteria. An interesting
property of criteria for selecting subset of regression test cases is not to exclude
any test that may reveal a possible fault.

How would you classify such property according to the sidebar of page 21?

Draft version produced October 21, 2006


