Assignment 6

CIS451/551, Fall 2006
due 5:00pm Monday, December 4. If you submit it, the lowest homework among 6 assignments will be thrown out.
1.Create a schema in XML Schema corresponding to the following DTD:

```
<!DOCTYPE bib [
    <!ELEMENT book (title, author+, publisher, keyword+)>
    <!ELEMENT publisher (pub-name, pub-branch) >
    <!ELEMENT title ( #PCDATA )>
    <!ELEMENT author ( #PCDATA )>
    <!ELEMENT keyword ( #PCDATA )>
    <!ELEMENT pub-name( #PCDATA )>
    <!ELEMENT pub-branch( #PCDATA )>
    ] >
```

2. Given relations $r(A, B, C)$ and $s(C, D, E)$, which have the following properties: r has 40,000 tuples, s has 30,000 tuples, 50 tuples of r fit on one block, and 15 tuples of s fit on one block. Estimate the number of block transfers and seeks required, using each of the following join strategies for $\mathrm{r} \bowtie \mathrm{s}$:
a. Nested-loop join
b. Block nested-loop join
c. Indexed nested-loop join (suppose there is a primary B+ tree index with height 4 on the join attribute (C).)
d. Merge join
e. Hash join
3. Suppose that a B+-tree index on (branch-name, branch-city) is available on relation branch. What would be the best way to handle the following selection?

$$
\sigma_{(\text {branch-city<"Brooklyn" })^{\wedge}(\text { assets }<5000)^{\wedge}(\text { branch-name="Downtown" })}(\text { branch })
$$

4. Exercise 15.6. (15.10 in old version). Also, suggest to either add a new edge (i.e., <T1,T3>) or remove an edge that would change the story (reverse your conclusion of conflict serializable or not). 5.Consider the following schedule:

Step	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$
1	Write(A)		
2		Write(A)	
3			Write(A)
4	Write(B)		
5		Write(B)	

Is this schedule allowed in timestamp-ordering protocol? Explain why?

