
Anne Surkey
Database Processing CIS 451/551
November 17, 2006
Assignment 4

1. Some students only did parts a,b,c – which is ok. For those that also did exercise 7.1 in the text,
R1 ∩ R2 = A; A+ = {A,B,C,D,E} ≥ R1. Therefore the given decomposition is lossless.
a) R1 ∩ R2 = C. C+ = {C} != R1 nor R2. Therefore the given decomposition is lossy.
b) Based on the BCNF violation B→D, we get: (B,D) and (A,B,C,E).
c) R is trivially valid. Also valid: (A,B,C), (C,D,E), (B,D), (A,E).

2. A→B, C→B, AC→B. Plus all trivial dependencies: αβ→α, where β can be empty.
3. We will just list the relevant closures for candidate key identification:

A+ = {A,B,C,D,E} , B+ = {B,D}, C+ = {C}, D+ = {D}, E+ = {A,B,C,D,E}
BC+ = {A,B,C,D,E}, CD+ = {A,B,C,D,E}. Therefore the candidate keys are: A, E, BC, CD.

4. There are some variations, but here is one solution:
UNION: prove α→β and α→γ gives α→βγ

1. α→ αβ (augmentation on α→β)
2. αβ→βγ (augmentation on α→γ)
3. α→βγ (transitivity on 1 & 2). QED

PSEUDOTRANSITIVITY: prove α→β and βγ→δ gives αγ→δ
1. αγ→βγ (augmentation on α→β)
2. αγ→δ (transitivity on 1 & βγ→δ). QED

5. a) The relation does not satisfy 3NF because book_type is neither trivial, nor contained in any
candidate key. The candidate key is (title, author).

b) book_type→price causes our first decomposition into:
(book_type, price) and (title, author, book_type, author_affiliation, publisher)

author→author_affiliation causes another decomposition into:
(author, author_affiliation) and (title, author, book_type, publisher)

 title→book_type, publisher causes the final one:
(title, book_type, publisher) and (title, author)

Therefore (book_type, price), (author, author_affiliation), (title, book_type, publisher) and (title,
author) is one BCNF decomposition.

6. ZDB_ID is not in 1NF. There are many reasons why something like this can happen – even the
non-ideal reason is possible: “Well, the person who first designed the schema it never took CIS 451
and that's just how they always did it and we just work around it.” Sometimes it is also hard to
generate and lock a unique ID in some DBMS systems (like MySQL). GetZDBID generates a new
unique ID based on the given type. The third field is a date-stamp, a common practice in older
methods for assisting in generating a guaranteed unique ID. Think about it: 2 people request a
new ID at exactly the same time – how do you guarantee they get unique ones? It is not as easy as
it sounds to implement without a good lock manager. GetType and GetDate are possible functions.

