
Java Map Mouse Control
CIS422 Project 1 (prototype), Fall 2007

Michal Young

Preliminary version 1.0 of 24 September 2007

Abstract

A haptic soundscape map is a way of making a map accessible to blind
people using sound and some form of touch (force feedback, vibration, etc.)
in place of visual data. CIS 423/510 students, working with geography stu-
dents, created a haptic soundscape map of the University of Oregon campus
in spring 2007. While largely successful, one of the important outcomes of
that project was the realization that using Flash as the presentation medium
was not compatible with some proposed interaction techniques. This raises
the question: Could the map be presented using Java graphics libraries?
What are the consequences for performance and for application size and
complexity? In particular, can a reasonably simple implementation in Java
track the mouse cursor and trigger sound and haptic effects in real-time as
the cursor sweeps across a complex map? The purpose of this project is to
resolve that question with a prototype implementation.

Note: This document is incomplete. Revisions will provide more information
about the earlier map implementation (from which you may scavenge code as well
as data) and more detail about what you must actually turn in.

Java Map Mouse Control 2

Contents

1 Introduction 3
1.1 Haptic soundscape maps . 3
1.2 The UO Campus Soundscape Map 4
1.3 Prototype goals . 5
1.4 Priorities . 5

1.4.1 Hit detection performance 5
1.4.2 Auto-pan . 6

2 Background: What’s a prototype for? 6
2.1 Requirements risks . 7
2.2 Interaction risks . 7
2.3 Development risks . 8
2.4 Technical risks . 8
2.5 How to win by losing . 9

3 What is Required 9

4 Technical notes 10

Java Map Mouse Control 3

1 Introduction

1.1 Haptic soundscape maps

Blind people need maps as much as sighted people do, or perhaps more: They are
less able than sighted people to use street signs and other visible indications to
find their way around in an unfamiliar location. Conventional maps, however, are
not accessible to blind people.

Most maps designed to be accessible to blind people use one of two ap-
proaches, tactile mapping or haptic soundscape mapping. Tactile mapping pro-
duces raised impressions (“bumps”) on a physical medium. Although there are
still many open research questions regarding tactile mapping, it is well enough
understood that standard tactile symbols are being developed, and tactile map
production software is under development (by the research group of Professors
Lobben and Fickas at University of Oregon).

Sighted people increasingly make use of interactive maps, but current tactile
output (with the exception of small Braille displays) are static. Haptic soundscape
mapping is an attempt to provide interactive maps that use the senses of hearing
and touch in place of the sense of sight. The haptic (touch) element could be
force feedback or texture conveyed through vibration, as some gaming devices.
Sound can include speech sounds (for example, pronouncing the name of a street
or building under a map) or non-speech sounds, which could be symbolic (e.g.,
traffic noises to indicate a street) or non-symbolic (e.g., middle C played on a
piano to indicate a doorway).

The research supporting haptic soundscape maps is much less well developed
than that supporting tactile mapping. Several experimental maps have been cre-
ated at University of California, Santa Barbara, and a few have been constructed
by research groups elsewhere, including University of Oregon. We cannot say that
haptic soundscape maps are a good way or a practical way of providing interac-
tive, computerized maps to blind people. What we can say is that more research
is needed to understand whether and how haptic soundscape maps can be useful,
and that research necessarily involves constructing maps for evaluation.

The overall purpose of this project is to support research in haptic soundscape
mapping, which may in turn enable production of really useful maps that use
haptics and/or sound.

Java Map Mouse Control 4

1.2 The UO Campus Soundscape Map

In Spring 2006, CIS 423/510 students, in collaboration with graduate students in
Geography, created a haptic soundscape map of the University of Oregon campus.
I believe it is the first such map to largely automate the map production process,
taking map data from a GIS database and applying sound and haptic effects spec-
ified in a style file to produce Flash files. Automation and flexibility are important
in a research environment, where it is necessary to produce and evaluate variant
maps to test different ways of using sound and touch.

The software produced in Spring 2007 is a “proof of concept” prototype. I
consider it very successful, because we demonstrated (to ourselves and to our
collaborators) that we could entirely bypass the usual steps of editing the map in a
drawing program like Adobe Illustrator. We also discovered some problems in the
approach we took, which we would not have discovered without actually building
it.

One problem is that, while we were able to automatically generate all the
ActionScript1 code to produce a campus map in Flash, we did not eleminate the
(trivial, but necessary) step of compiling the ActionScript code into a runnable
Flash object file. This made us dependent on an (expensive) piece of commercial
software to produce maps. Sharing a single floating license (and only for the
Windows platform) was a frustrating bottleneck in development. Recently Adobe
has distributed a free compiler for the most recent version of ActionScript, so this
problem may resolve itself.

The second problem with using Flash as the presentation medium seems to
be more fundamental. One of the interface techniques devised by members of
the CIS423 team involved a kind of panning in which the mouse cursor remains
still while a (potentially very large) canvas moves under it. This was intended to
avoid potentially frustrating problems when the mouse left the main map canvas.
Unfortunately, it turned out to be impossible to implement the auto-pan technique
in Flash displayed in a browser window, because the Flash executes in a sandbox
environment and cannot modify the mouse cursor position.

Both of these problems, but particularly the second, led the student team to
consider whether it might be advantageous to use a Java application, rather than a

1ActionScript is the scripting language embedded in Flash. It is a dialect of ECMAscript, better
known for its JavaScript dialect. JavaScript and ActionScript were once nearly identical except
that JavaScript included Document Object Model (DOM) libraries for HTML and ActionScript
included DOM libraries for Flash graphics. Now they have evolved somewhat divergently, but the
core ActionScript language still looks familiar to JavaScript programmers.

Java Map Mouse Control 5

Flash movie, as the medium for presenting the map.

1.3 Prototype goals

The purpose of this prototyping exercise is to learn whether using Java graphics
libraries is really a practical alternative to presenting a map with a presentation
engine like Flash, an SVG viewer, Silverlight, etc.

The Flash player (or an SVG viewer plug-in, or presumably Microsoft’s new
Silverlight players) contains high quality, optimized graphics facilities. There is
a danger that using Java graphics libraries instead might cause noticeable perfor-
mance lags. There are at least three ways performance could be noticeably worse.

• Drawing a complex map could be slower using the Java graphics library
than using a Flash movie. An additional lag of more than a second would
be noticeable. A lag of more than 5 seconds (on a current but modestly
provisioned desktop or laptop computer) would be unacceptable.

• A Java program to display a map might be considerably larger than a cor-
responding Flash movie, causing a noticeable communication delay. This
is a less urgent problem than slow drawing, because it might be acceptable
to separate downloading or otherwise acquiring a Java-based map from dis-
playing and interacting with it.

• A Java program might be too slow at hit detection, that is, triggering the
appropriate effects (sounds, haptic effects) as the mouse enters and leaves
shapes on the screen. (Hit detection is closely related to collision detection,
and can be considered collision detection between an object representing
the mouse and other objects on the canvas.)

In addition, the auto-pan feature might be difficult to implement or might not
perform acceptably.

1.4 Priorities

1.4.1 Hit detection performance

The first priority for the Fall 2007 prototype is to evaluate the feasibility of hit
detection in Java for interactive maps.

Java Map Mouse Control 6

• For a soundscape map of the same complexity as the UO campus haptic
soundscape map, can a Java application track the mouse cursor and deter-
mine which objects it is moving over quickly enough to play the appropri-
ate sounds even when the mouse is moved quickly across the screen? How
quickly?

• If performance is acceptable with the UO Campus soundscape map, how
does it scale with larger numbers of shapes or more complex shapes? What
is the practical limit on number, density, or complexity of shapes, before hit
detection becomes too slow or its support data structures become too large?
A working definition of “too slow” is inability to determine which shape
the mouse cursor is over at least 10 times per second on a typical laptop
computer.

1.4.2 Auto-pan

The second priority is to demonstrate the feasibility of auto-pan, in which mouse
cursor movement is limited (it may either be fixed, or move only within a limited
sub-area of the display window) and the map canvas moves under it in a direction
contrary to mouse movement (so that the net effect, with respect to mouse cursor
position on the canvas, is the same as it would be without panning, if the window
were as large as the canvas).

• Can auto-pan be implemented in Java?

• If so, does it have any unanticipated negative effects (e.g., does it interfere
with hit detection?)

2 Background: What’s a prototype for?

The purpose of a prototype is to reduce risk by obtaining information. Often a
prototype is an early version of an actual application (an “alpha” or “beta” re-
lease), but not always. It is crucial to first consider what information a prototype
is designed to obtain, and only then settle on the approach and content of a proto-
type.

Java Map Mouse Control 7

2.1 Requirements risks

One common and important kind of risk in application development is require-
ments risk. If I build for this client exactly what she described in the meeting, will
she hate it anyway? Requirements risk is highest when building some really novel
piece of software, and lowest when building software that is very routine and com-
monplace. If the project is to build an Excel work-alike for Linux, requirements
risk is low because our client and we have a good understanding of what is needed
to be similar to Excel. (There might still be requirements risk, because the user
audience on Linux is not the same as the user audience on Windows, but it’s prob-
ably an acceptable risk.) If, on the other hand, we are building some entirely new
class of application that no one has used before, then requirements risks are very
high. It is very likely that what one imagines will be useful and what is actually
useful are not quite the same.

Prototypes to control requirements risks are designed to help users and de-
signers discover the actual requirements for an application. They provide some,
limited functionality, sufficient to discover flaws and incompleteness in the origi-
nal conception of the application. They may or may not be early versions of the
actual application — often they are, but other times the most efficient approach
is to build a simple throw-away prototype to play with, perhaps using a different
programming language and libraries than are required by the eventual production
version of the application.

2.2 Interaction risks

Even if we have a firm grasp on the essential functionality of an application, there
is a risk of not getting all the details of interaction right. In fact, for any piece of
software used directly by people, user testing and iterative refinement are essential
for usability. (Take CIS 443/543 to learn more about this.)

Interaction risks are related to requirements risks, but they are not quite the
same, and techniques for risk control are not quite the same either. Often a good
“prototype” for early usability testing is something completely fake — even rough
sketches of screens on paper, or mocked up with a drawing program. As devel-
opment continues, it is important to also perform user testing with actual running
versions of the software, but that is seldom needed to get started.

Java Map Mouse Control 8

2.3 Development risks

A third important class of risk is in the development process itself, especially with
respect to schedule. You can consider any milestone in the development process at
which running software is demonstrated to be a kind of risk reduction prototype.
A demo of running parts of the project (if planned correctly) reduces the likelihood
that our schedule is wildly optimistic. We’ll talk a lot about this in CIS 422/522.

2.4 Technical risks

Finally, there are risks that are purely technical in nature. Can this database pack-
age really handle the quantity of data we’ll encounter? Will distributing the appli-
cation in this way across servers lead to unacceptable performance, or open us to
security holes? Does the printing library work the way we think it does?

Every software project involves hundreds or thousands of small technical risks.
Most are small enough that we simply resolve them as we go, without much worry.
A few are more significant, and it’s important to anticipate them and reduce the
risk early. It is not a happy even when we discover late in a project that the ap-
proach we have chosen is simply not going to work.

As with requirements risks, technical risks are smaller or greater in proportion
to the degree of novelty in a project. However, technical novelty and novelty in
the application as seen by the user are not the same thing. I might use libraries
I know forward and backward to produce an entirely new kind of application, or
I might produce a very conventional application using a technique I have never
tried before.

It is often useful to build prototypes to assess technical risks. A prototype for
assessing a technical risk needs to be just realistic enough for that assessment. It
need not be useful. It need not have all or even many of the features of the real
product. On the other hand, it often needs to be scalable and instrumented in ways
that the final product is not, to answer questions about the range of conditions
under which the approach taken in the final product will work.

Our current prototyping exercise is of this kind. There are specific technical
risks that need to be assessed. It is not important that the prototype be a useful
map, but it is important that it tell us whether it will be feasible to implement
useful haptic soundscape maps in Java. Since there is no reason to think that the
answer depends on the nature of the feedback triggered as the mouse moves over
objects on the canvas, we can answer it with sound feedback alone, leaving aside
haptics for the moment. On the other hand, in addition to the UO campus map,

Java Map Mouse Control 9

we should produce (possibly random) collections of shapes that are much larger
or have many more shapes, and collections that we think might be “bad” in some
significant way. For example, unless we can be certain that the distribution of
shapes on the canvas doesn’t matter, we should consider the case where many,
many complex shapes are stacked in one part of the map.

2.5 How to win by losing

Answers to the questions posed in this exercise might be negative. Maybe the
answer to “Can auto-pan be implemented in Java?” is “no”. Maybe the answer to
“can a Java application track the mouse cursor and determine which objects it is
moving over quickly enough . . . ” is “no”. What then?

Of course we prefer a positive answer, perhaps of the form “Not quite like
that, but if . . . then we can . . . ”. But we may not get even that. What then?

The value of a negative answer comes from being clear, convincing, and
loaded with information that can be used in finding alternative approaches. “I
didn’t find a way to make it fast enough” has some value, but not a lot. “The cost
rises quadratically with the number of sides in each shape, because the floom-
flazzle library compares all pairs of sides” is much more valuable. If you appear
headed for a negative result, make it worthwhile by finding a definitive explana-
tion of why something doesn’t work. Insight into possible workarounds is also
good.

3 What is Required

For this prototype project, what I require is an assessment of at least one of the
two prioritized questions above. This assessment should include running code,
but it need not be a usable map. I will not require a user manual. I will, however,
require a write-up that provides a good analysis of your design.

If the answers to the questions are positive, then I sugggest (but do not require)
that your prototype also contain code and design documentation useful to devel-
opers producing a full haptic soundscape map. I will suggest (but not require) that
teams use the second half of the academic term to produce such maps, or more
precisely, tools for creating such maps. Teams that produce reusable code in ad-
dition to a good assessment of the performance and capability questions will have
a big head start on the final project.

Java Map Mouse Control 10

4 Technical notes

Here are some random notes on how you might approach this. These are not
requirements.

Beware non-simple shapes. Look at Bean housing complex on a campus
map — it looks like two interlocking rings. There are different ways to represent
such complex shapes. The way used by ESRI software (which is the dominant
software used in professional mapping) seems to use the direction of rotation
(clockwise or counterclockwise) to indicate whether a shape indicates donut or
hole. I do not know if this can be easily reconciled with the winding rules sup-
ported by Java graphics libraries.

Consider z-order. If there are two or more objects under the mouse, the one
upper-most is the one that matters. You don’t need three dimensions for this. It’s
sometimes called “2.5d graphics”, i.e., 2 real dimensions plus order of stacking.

Divide and conquer. java.awt.geom.Area has collision detection methods (“con-
tains”, “intersects”, etc), and ultimately you probably want to use these, but you
can’t possibly afford to ask every shape on the screen whether it contains the cur-
sor. A fairly standard approach to such problems is quadtree data structures, but
if you use quadtrees, you need to be particularly careful of the case where many
objects are stacked in exactly the same place. If you google around, you’ll find
that some people advocate a fixed grid arrangement (sometimes called a “spatial
hash”) instead, but it seems to me that a spatial grid will have the same problem
with large and irregular shapes.

Here’s your worst nightmare for a simple-minded quadtree structure: In the
campus map of UO, there is really only one street object — it’s one big street-
thingy representing all the streets on and around campus. Therefore, if you tried
to use its bounding box to place it just in the elements of the grid that it could lie
in, it would be in every grid element. So you’ll have to do better.

Jumping the mouse. The robot class seems to be able to do this, but it will
also generate an input even that appears as if the user had made that mouse move.
I’m not sure if there is a better way, or a good way to cope with these bogus input
events.

