
Introduction to Design and
Information Hiding

CIS 422, Fall 2007

What is Design?

What is Design? (My answer)

• Reasoned choice

– Determining alternatives

– Predicting consequences

– Balancing tradeoffs

Design is not a phase!

Requirements

Design

Implementation

Design Everything

• Design is not a phase

• Everything is design

– Design the product
• Its specification, structure, and implementation

– Design the process

– Design the organization

Designing Software Structure

• Key Goals

– Design for change

– Design to schedule

– Design for risk control

• Approach

– Information hiding

Design for Change Why does software change?

• External environment (e.g., Lira -> Euro)

• User audience - new requirements

• Technical environment

– XP to Vista; static html to dynamic to ajax;
web-enabled office software; ...

Eugene Register Guard, 10 April 1999, Pg. 5B:

Washington Driver’s Manual, Test
Flawed

In recent months, the department has used a computerized test

that was known to have some answers that conflicted with

state law or the state-issued study guide. [...] Some 97,414

tests were administered during the three months, with 36,391

failures reported.

Some computers used to administer the tests are still

marking correct answers as wrong, said department

spokeswoman Suzannne Taylor. The problem lies in

getting updated software for the computers’ testing

program, she said.

“

”

How hard can this be?

• How can it happen that Washington has
to wait for updated test software with
correct answers?

• How would you design that system?
Would your design be vulnerable to this
problem?

Information Hiding for Change

• Identify design secrets

– A secret is a potential change that nothing
else should depend on

– A module or subsystem hides a secret
• Localizes an anticipated change

Hiding and Abstraction

• What is “abstraction”

– or “an abstraction”

– or “an abstract interface”?

• Hint:

– “Abstract” does not mean “vague”

– “Abstract” does not mean “mathematical”

Abstract

• X is an abstraction if it can be realized
(implemented) in multiple, different ways

– X is “more abstract than” Y if
implementations(X) ! implementations(Y)

• An interface can “abstract over” a set of
possible implementations

– the variation is the design secret

Abstract Interface Examples

Window system,

graphics platform

(Win32, Cocoa, X, ...)

GUI widgets & interactionJava

Swing

Storage structure,

concurrency control

Relational database

manipulation

SQL

Storage media, device

characteristics

Addressable block storageIDE

Routing, transport

(ethernet, PPP, ...)

Reliable communication

stream

TCP

Abstracts over (secret)Provides Abstract ServiceInterface

Hiding is Not Free

• Hiding means pretending not to know

– Not taking advantage of information that is
“hidden” in other modules or subsystems

– Not using the faster special case (optimizing)

– Coding for all cases, not just those that can
actually occur

• So we hide some things and reveal others

What to Hide?

• Distinguish “likely changes” from
“fundamental assumptions”
– A “fundamental assumption” can be spread

throughout system

– A “likely change” should be isolated (hidden)

• Example
– SQL databases hide many details

• index structure, locking or versioning protocol, ...

– But relational (vs. OODB, etc.) is a “fundamental
assumption”

Change Time Scale

• Minutes? Hours? Weeks? Years?

– Binding mechanism may be different in
each case, from table-driven programming
to modular organization

• Binding time is a design tradeoff

– Usually, “more dynamic” is more expensive
in complexity and/or performance

• but not always (e.g., video games, Washington
driver test)

Designing Software Structure

• Key Goals

– Design for change

!Design to schedule

– Design for risk control

• Approach

– Information hiding

Information Hiding
 and Design to Schedule

• Fixed schedule, flexible feature set

– Expand or contract as time allows

– Deliver incremental releases

• Three considerations

– Independence of optional features

– Parallel development

– Staging and replacement

Dependence

• If module A depends on module B

– B must be developed first

– A cannot be delivered unless B is delivered

– Changes to B may require changes to A

• We would like to break (some of) these
dependencies

Dependence is Semantic,
not (only) syntactic ...

• Dependence may not equal “calls”

• Dependence may not equal “reads
from”

• Dependence may not equal “import”

Breaking Dependence

A

B

A

B

B'

Breaking Dependence with an
Interface

A

B2

Interface

B1

Uses

Implements

Examples:

 Java Interface

 Device Driver

 Protocol

 Virtual Machine API

Expand and Contract

• Minimize dependence on optional
features

– Hide presence/absence to the extent
possible

• Dependence should be consistent with
build order

– Develop as a series of releases

Design to Control Risk

• Be explicit: What are you worried about?

– You should have a “risk plan,” including
technical and non-technical risks

• Risk implies potential change

– So the design-for-change techniques apply:
Information hiding, abstraction

Object-Oriented

• Myth: Object-oriented = information
hiding

• Reality:

– OO is based partly on information hiding
principles

– OO is often good for hiding data structures

– OO may not help hide other design secrets
• and can even get in the way, sometimes

Language Support for
Information Hiding

• Visibility control

– Private classes, private methods, packages ...

– Helpful for information hiding

• “Abstract” interfaces (abstract classes,
interfaces, ...)

– Usually: Encapsulate data structure

– Possibly allow multiple implementations
• but only if well designed

Where Language Support Fails

• Hiding memory management policy

– especially problematic in C++; less in Java

• Hiding concurrency policy

– although Java has made some progress here

• Factoring information from control

– what Washington driver test needed

• Large-scale structure

– Packages are (just) a start

Approaching Design

• Start with explicit consideration of risks,
schedule, and likely changes

• Then consider gross organization, with
explicit design secrets

• Then (and only then) choose an
appropriate design approach
– OO design, data flow, layered, ...

– Probably more than one, at different levels

Applied to 07F project ...

• Overall project:

– Risk identification: Java graphics might be
unsuitable for map display/interaction

• Tracking mouse hits too slow or complex?

• Jumping mouse unworkable?

– Separation of concerns / info hiding:
• Relative independence (?) of GIS style mapping

from display & interaction

• But display & interaction is a big chunk - all
interaction will need reimplementing in Java

Applied to 7f Project (cont)

• Design decision:
Interpretation/translation approach
– Directly interpret XML + styles ?

– Translate XML + Styles to Java code?

– Translate to data and interpret that?

• A “binding time” issue
– Very common design dimension, often

trading performance and flexibility

– Different tradeoffs from drivers’ test problem

Product Design & Process

Shapes

xml

Styles

xml

Display & interact

(interpret)

Shapes

xml

Styles

xml

Translate

Intermediate

form

Display & interact

(interpret)

How might it matter?

Under what conditions?

What Else Can You Factor?
(and why?)

Intermediate

form or ??

Display & interact

(interpret)
Display and Interaction

Objectives: Parallel work, independent choice,
precise interface definition

