
CIS 630: Distributed Systems
Fall 2007 Syllabus

Meeting Times:T-Th, 12-1:20pm, Deschutes 200

Instructor: Yannis Smaragdakis, Deschutes 245, 541-3463473
yannis@cs.uoregon.edu
Office Hours: by appointment— available most late afternoons and early evenings

Course Outline:
We will discuss distributed system abstractions and their implementations. The core of the 
course contains concurrent programming (threads and synchronization), explicit inter-pro-
cess communication (network programming, middleware), and a variety of other distrib-
uted systems topics (time coordination, distributed file systems, transactions, distributed 
shared memory, etc.).

Textbooks: I will be passing out copies of research papers and occasionally notes. Yet, if you need to 
refer to a second source for the same topics, the following are good background books:

Distributed Systems: Concepts and Design, Coulouris, Dollimore, Kindberg, Addison-
Wesley, 2005.
(Not required, but strongly recommended.)

Distributed Systems, Tanenbaum and VanSteen. Prentice Hall.
(A good textbook for the subject. New version of the good but out-of-date “Distributed 
Operating Systems” by Tanenbaum.)

Multithreaded Programming with Pthreads, Lewis and Berg. Prentice Hall.
(Excellent book on multithreading and systems issues— not too Pthread-specific at all.)

Pthreads Programming, Nichols, Buttlar, Farrell. O’Reilly.
(Fairly good and inexpensive Pthreads manual.)

Operating Systems Concepts, Silberschatz and Galvin, 6th Ed. Addison-Wesley.
(Operating Systems background textbook.)

Exams: All exams are closed-books, closed-notes. Current schedule:
Midterm: Thursday October 25
Final Exam: in regular exam period

Grading: 40% exams (20%+20%)
10% paper presentation/review
10% (easy!) homeworks
30% projects (15%+15%)
10% extra credit/class participation

Homework and Assignment Due Times: 
Homeworks are due by class time on the due date (either by email before class or as hard-
copy in class). Programming assignments (by email) are due by midnight (11:59pm) of the 
due date.



Late Penalty Policy (only for programming assignments):
This late penalty policy applies only to projects, not to homeworks! 5% penalty for each 
day late, up to 5 days (25%), weekends together with Monday count as a single day, holi-
days do not count as late days.

You can think of the “late penalty” policy as an “early credit” policy: the real deadline is 
five days after the posted deadline, but if you submit before that, you get early credit.

Honor Code: Familiarize yourselves with the UO Student Conduct Code. I follow the standard process 
in all academic misconduct cases. This means that even if we both agree on a sanction, I 
have to report it to the Director of Student Conduct.

Other Resources:
Newsgroup: uo.classes.cis.cis630 on the CoC news server (news.cs.uoregon.edu). We 
may just use an email list, though.
Web page:
http://www.cs.uoregon.edu/classes/07F/cis630/

Caveats:

Test make-ups: You miss an exam, you lose the points! If you have a serious reason to 
miss a scheduled exam (e.g., sickness, or serious reason to travel) make sure you tell me in 
advance of the exam. After the exam is over, if you have not taken it and you have not told 
me why you didn’t take it, you are out of luck! Emergencies that also prevent you from 
notifying are an exception, of course.

Collaboration: No collaboration is allowed in projects and homeworks. All work submit-
ted in this course must be your own and produced exclusively for this course. Neverthe-
less, there is a difference between seeking technical help (e.g., why does my program 
crash here?) and giving/receiving large sections of source code. You should feel free to ask 
questions and give answers about technical matters. It is fine to share or re-use short code 
segments (say, 10 reasonably formatted lines) that can be considered “standard infrastruc-
ture” for a task (e.g., opening sockets, or creating threads). You are encouraged to do this 
through the newsgroup/forum. The rule-of-thumb for collaboration is: if you feel comfort-
able posting the info to the newsgroup/forum (for everyone, including me, to see), then it 
is ok. Otherwise, it is not.

Debugging with me: I will spend time helping you debug your programs, but this typi-
cally will happen only when you are totally lost. If you come to me with a problem, make 
sure you have spent a lot of time trying to resolve it. Also, make sure you have a setup 
where I can quickly reproduce the problem, and ideally even a much simplified example 
where the problem still exhibits itself.

Project descriptions: For any major departure from the project requirements (different 
deliverable, very different mechanism, etc.) consult with me first! Do not assume that the 
project is just about testing whether you can program! It is not! The project is about imple-
menting what I ask for. If I say “use RPC” and you instead decide to use sockets, you will 
lose many points, even if you are an expert programmer, and you have a great deliverable, 
and you spent twice the time that everybody else did coding your project to perfection.


