Assignment 2

due Monday, January 29, 2006

1. (Horner's Rule) Exercise 2.3, p 39, part a only. [3 points]
2. What is the running time for the following code, which multiplies two $n \times n$ matrices A and B, storing the result in C ? [4 points]
```
for i=1 to n
    for j=1 to n {
            C[i,j] = 0
            for k=1 to n
                C[i,j] = C[i,j] + A[i,k]*B[k,j]
            }
```

3. Determine the run times of the following two pieces of code, which do pretty much nothing. [6 points]
```
sum =0
for i = 1 to n*n
    for j=1 to i*i
            sum += i*j
```

and

```
sum =0
for i = 1 to n*n
    j=i
    while j>1
            sum++
            j /= 5
```

4. Show that $\sum_{i=1}^{n}\lceil\log i\rceil=\Theta(n \log n)$. Do this directly, without recourse to Stirling's approximation [6 points]
5. Suppose that each row of an $n \times n$ array A consists of 1 's and 0 's in such a way that, for any row, all the 1 's come before any 0 . Assuming that A is already in memory, describe how to find which row of A which contains the most 1's. Aim to do this in $O(n)$ time, not $O\left(n^{2}\right)$. [6 points]
6. Occasionally, multiplying the sizes of nested loops can give an over-estimate for the big-O running time. This happens when an innermost loop is infrequently executed. With this in mind, determine the running time of the following piece of code. [8 points]
```
for( int i = 0; i < n; i++ )
    for( int j = 0; j < i * i; j++ )
        if( j % i == 0 )
        for( int k = 0; k < j; k++ )
                    sum++;
```

7. (Recurrence Relations) Exercise 4.3-1, p 75. [6 points]
8. (Recurrence Relations) Exercise 4.3-2, p 75. [3 points]
9. Describe a non-recursive method for finding, by link hopping, the (approximate) middle node of a singly-linked list. This method must use only link hopping; it cannot use a counter. What is the running time of your method? [4 points]
10. (Reverse a linked list in constant space) Exercise 10.2-7, p 209 [8 points]
11. Describe how to implement the stack ADT using two queues. What is the running time of the push() and $\operatorname{pop}()$ methods in this case? [6 points]

Total: 60 points

