
CIS 313 Introduction to Data Structures
Winter 2007

Extra Credit

The following are some slightly more challenging problems you might enjoy trying. We will assign
some extra credit for these. This extra credit will be added to your score after the grades curve is
determined - in this way there is no penalty for not doing any.

You may turn in a problem whenever you choose (note the first Note, however). You do not need
to turn them in together. They will be graded strictly. Do not guess at a solution - you will receive
no partial credit unless you are very close to being correct. It is possible that it will be returned to
you ungraded for further elaboration, which you can then give for reconsideration (at no penalty).

These will be worth a varying number of points, depending on how hard the instructor feels they
are and how much work you do. For example, the first one would be usually worth two points but
if you generalize the problem you could get even more. In general, an extra credit point is worth
more than a point on a homework.

Note 1: Only two extra credit problems per person will be accepted during dead week. None will
be accepted during finals week. However, resubmissions of previously submitted problems are not
subject to these constraints.

Note 2: This page may be updated throughout the term, so check occasionally for further problems.

• In class we saw that the code

sum =0
for i = 1 to n

for j=1 to i^2
sum += 1

takes Θ(n3) time, while

sum =0
for i = 1 to n^2

for j=1 to i
sum += 1

takes Θ(n4) time.

Find the time bound for

sum =0
for i = 1 to n^1.5

for j=1 to i^1.5
sum += 1

1



• Here are two strange looking recurrence relations which can be massaged into a form that
you will have seen before. Your goal is to solve them.

– Solve T (n) = 8T (
√

n) + lg n. Hint: Let S(n) = T (2n), derive a recurrence relation for
S, solve it, and back-substitute to get a solution for T .

– Solve T (n) = 3T (n− 1) + n2n. Hint: let S(n) = T (lg n).

• On one of the homeworks you were asked to simulate a stack with two queues. More interesting
is to simulate a queue with two stacks. This can be done more efficiently - any sequence of n
enqueue and dequeue operations can be performed in a total of O(n) time. Explain how.

• Explain how to find the second largest of a list of n elements using at most n+lg n comparisons.
(Hint: run a tournament as a complete binary tree.)

• Let T be a binary tree. It is not necessarily full - there may be nodes with 0, 1, and 2 children
- and in this context we consider a leaf to be a node with no children. Let nodes v1, v2, . . . , vk

be all the leaves, and for each i let li = depth(vi). Prove that

k∑
i=1

2−li ≤ 1.

This is known as Kraft’s Inequality.

• Actually, Kraft’s Inequality is more general and refers to codes. The previous question is an
application to binary trees, and is only one direction (of an “if an only if”). For this question,
show the following converse to the previous problem: If we have integers l1, l2, . . . , lk such
that

k∑
i=1

2−li ≤ 1,

then there is a binary tree T with leaves v1, v2, . . . , vk such that

∀i, li = depth(vi).

• You saw on a homework that there is a tree that can be colored as a red-black tree which is
not an AVL tree. Now prove that any AVL tree can be colored as a red-black tree.

• (2-3-4 heaps) exercise 19-1, pp 473-474

2


