MIDTERM SAMPLE SOLUTION

1. Provide solutions (using big-Oh or big-Theta) for the following recurrence relations.
(a) $T(n)=7 T\left(\frac{n}{3}\right)+n \lg n$
(b) $T(n)=314 T\left(\frac{n}{313}\right)+2^{315} \cdot n$
(c) $T(n)=25 T\left(\frac{n}{5}\right)+n^{2}$
\{sol'n\} The answers are $\Theta\left(n^{\log _{3} 7}\right), \Theta\left(n^{\log _{313} 314}\right)$, and $\Theta\left(n^{2} \lg n\right)$, respectively.
2. Into an initially empty AVL tree, insert the following values:

$$
62,47,32,15,26,30,27,28,29,10,5
$$

\{sol'n\} See the attached graphics below.
3. Insert the values above into an initially empty 2-3-4 tree.
$\{s o l ' n\}$ See the attached graphics below.
4. What are the run-times of the following pieces of code?
(a) for $\mathrm{i}=\mathrm{n}$ downto 1 \{
j $=$ i
while (j>=1) \{
sum++
$j=j / 313$
\}
\}
(b) for $\mathrm{i}=1$ to $\mathrm{n} * \mathrm{n} * \mathrm{n}$
for $j=1$ to $i * n$
sum++
\{sol'n\} The first piece of code is $\Theta(n \lg n)$ - note that the inner loop runs for $\log _{313} i=\Theta(\lg i)$ steps.
In part (b), the maximum value of i is n^{3}, and so the inner loop runs for at most n^{4} steps. With the outer loop running n^{3} times, the maximum total is $O\left(n^{3} \cdot n^{4}\right)=O\left(n^{7}\right)$.
A more accurate accounting would be

$$
\sum_{i=1}^{n^{3}} i \cdot n=n \cdot \sum_{i=1}^{n^{3}} i=n \cdot \frac{n^{3}\left(n^{3}-1\right)}{2}=\frac{n^{7}-n^{4}}{2}=\Theta\left(n^{7}\right)
$$

5. Write a recursive routine which, given an integer k , prints the keys of all nodes at height k . They can be printed in any order. The fields of each node are called key, lchild, and rchild.
\{sol'n\} This is similar to the balance factor problem of HW3 - in this case rather than calculating the balance factor, we compare our height to k . The initial call should be getHeights(T.root, k).
procedure getHeights(node p, int k) returns int
if ($\mathrm{p}==$ null) return -1
lHeight = getHeights(p.lchild, k)
rHeight = getHeights(p.rchild, k)
thisHeight $=\max ($ lHeight, r Height $)+1$
if (thisHeight==k)
print p.key
return thisHeight

The idea is to calculate the height of each node - get the heights of the left and right children, add one to the maximum of those two values. At this point, we compare our height to k , and print the key if equal. We will necessarily be doing a postorder traversal since we can't know the height of the current node before we know the heights of the children.

Question 2: build AVL tree

After the insertion of 26:

After 30:

After 29

After 10

And the final tree

Question 3: build 2-3-4 tree
The final tree, using the bottom-up technique described in class, is

