
CIS 313 Introduction to Data Structures
Winter 2007

MIDTERM SAMPLE SOLUTION

1. Provide solutions (using big-Oh or big-Theta) for the following recurrence relations.

(a) T (n) = 7 T (n
3) + n lg n

(b) T (n) = 314 T (n
313) + 2315 · n

(c) T (n) = 25 T (n
5) + n2

{sol’n} The answers are Θ(nlog3 7), Θ(nlog313 314), and Θ(n2 lg n), respectively.

2. Into an initially empty AVL tree, insert the following values:

62, 47, 32, 15, 26, 30, 27, 28, 29, 10, 5.

{sol’n} See the attached graphics below.

3. Insert the values above into an initially empty 2-3-4 tree.

{sol’n} See the attached graphics below.

4. What are the run-times of the following pieces of code?

(a) for i = n downto 1 {
j = i
while (j>=1) {

sum++
j=j/313
}

}

(b) for i = 1 to n*n*n
for j = 1 to i*n

sum++

{sol’n} The first piece of code is Θ(n lg n) - note that the inner loop runs for log313 i = Θ(lg i)
steps.

In part (b), the maximum value of i is n3, and so the inner loop runs for at most n4 steps.
With the outer loop running n3 times, the maximum total is O(n3 · n4) = O(n7).

A more accurate accounting would be

n3∑
i=1

i · n = n ·
n3∑
i=1

i = n · n3(n3 − 1)
2

=
n7 − n4

2
= Θ(n7).

1

5. Write a recursive routine which, given an integer k, prints the keys of all nodes at height
k. They can be printed in any order. The fields of each node are called key, lchild, and
rchild.

{sol’n} This is similar to the balance factor problem of HW3 - in this case rather than
calculating the balance factor, we compare our height to k. The initial call should be
getHeights(T.root, k).

procedure getHeights(node p, int k) returns int

if (p==null) return -1

lHeight = getHeights(p.lchild, k)
rHeight = getHeights(p.rchild, k)
thisHeight = max(lHeight,rHeight) + 1

if (thisHeight==k)
print p.key

return thisHeight

The idea is to calculate the height of each node - get the heights of the left and right children,
add one to the maximum of those two values. At this point, we compare our height to k, and
print the key if equal. We will necessarily be doing a postorder traversal since we can’t know
the height of the current node before we know the heights of the children.

2

Q u e s t i o n 2 : b u i l d A V L t r e eA f t e r t h e i n s e r t i o n o f 2 6 :4 72 6 6 21 5 3 2A f t e r 3 0 : 3 22 6 4 71 5 3 0 6 2A f t e r 2 9 3 22 8 4 72 6 3 0 6 21 5 2 7 2 9

3

A f t e r 1 0 2 82 6 3 21 5 2 7 3 0 4 71 0 2 9 6 2A n d t h e f i n a l t r e e 2 82 6 3 21 0 2 7 3 0 4 75 1 5 2 9 6 2

4

Q u e s t i o n 3 : b u i l d 2 � 3 � 4 t r e eT h e f i n a l t r e e , u s i n g t h e b o t t o m ' u p t e c h n i q u e d e s c r i b e d i n c l a s s , i s3 01 5 2 7 4 75 1 0 2 6 2 8 2 9 3 2 6 2

5

