
Mark Bailey 1
CS 510 User Interface Programming
 UIDE (User Interface Development Environments)

 A UIDE main goal is to make it easier for the programmer to develop the user

interface. Creating the graphics behind a user interface is complicated but is mostly

handled by the operating system. The UIDE is responsible for making the interaction

with the controls exposed by the operating system reliable, understandable, and

interactive. Since there are so many different UIDE’s that have been produced and are

currently being used there is no way to give a full review of them all. Instead the main

areas of the graphical interface will be explored and possible solutions that can help for

those areas will be reviewed. The main model of the graphical user interface is the MVC

(Model View Controller) each of the three sections will be explored.

View
 Creating an automated graphical view was the first thing that was done in the

evolution of the UIDE with the creation of ResEdit for the MacOS (Foley et al, 1991).

Enabling the creation of the view through the use of direct manipulation is the action that

is most often associated with the UIDE since it is what most developers use an UIDE for.

 With the creation of the ability of quickly creating the view it has enabled

developers to start using the development environment to create a prototype of the

program. It can be something that is never meant to be part of the final product. This can

cause problems. People that are only familiar with the prototype during the software life

cycle might think that the quickly created view shows a more complete version of the

software then really exists. Since the view looks done and that is the part of the program

that people interact with they will assume that the rest of the application is in the same

state.

Mark Bailey 2
CS 510 User Interface Programming
 UIDE (User Interface Development Environments)

 With the UIDE creating a visual view in the machine code there can be conflicts

with the developers work. Since the program is creating the view it writes the code that is

bound to that visual view. The ability of a machine to create human readable code is not a

trivial task and is a problem that must be dealt with if the developer is able to interact

with the code that the UIDE creates.

 When the developer modifies the code that the UIDE creates for the visual view

then the UIDE must be able to parse that code to modify the view based on the

information. Parsing textual information to alter a visual object is not easily done as

pointed out by the existence of this the user interface programming class. Standardizing

how different UIDEs parse the text given to it after it is near impossible.

 To illustrate the creation of the view using a UIDE I used .Net with Visual Studio

2003. I was able to easily create different views ranging from simple to complex.

However with complex views I needed to have access to the code that was created by

.Net. .Net offers access to the code that is created but with the warning it is “Windows

Form Designer generated code”. Windows does not try to sync the code created by the

developer. Anytime the “design” view is changed this area of the code is written over and

any changes are lost. This forces the developer to create the basic layout using .Net and

then abandon using it again with the knowledge that changing anything using the

“design” view will erase all developer entered work. There is no way to disable the

“design” view in .Net so the need for a code repository is very high.

 Even with .Net creating the code for the view it did not guarantee that the same

view for other programs. Mono is open source software that can read the interpreted

language created by .Net. Microsoft supports the Mono project but when running the

Mark Bailey 3
CS 510 User Interface Programming
 UIDE (User Interface Development Environments)

code from .Net there were minor differences between what was shown under Windows

and using Mono.

 For practice with debugging the graphical view I used jSpy. It is a java program

that can read the code created for a Java program as it runs. By clicking on the different

areas of the program it shows the pertinent parts of the code and hierarchal information. It

would be helpful in the case of trying to find which panel has been put where by the

window manager to make sure they will all react correctly to window events such as

resizing.

Controller
 The controller was first automated by NeXT with the creation of Interface

Builder. Up to this point Interface Builder is really the only UIDE created that allows to

visually link the controller to an action. I was not able to find any other applications that

do anything similar or information as to why. The only reason that I can guess is because

of some kind of patent keeping others from following.

 The way that Interface Builder links the controller is through a visual line. When

the mouse is dragged from the object to the controller it creates a link between the two.

When the link is created a window pops up with the links to the project code. The

operation is very easy to understand and linking already created actions can be done with

out ever opening Xcode.

 Problems arise when trying to do something out of the ordinary. While it is easy

to add new code, modifying existing code can cause problems. I experienced a spatial

disconnect between using Xcode and then finding the same stub of code in Interface

builder. Even if they had both been in the same application it would have been easier. For

Mark Bailey 4
CS 510 User Interface Programming
 UIDE (User Interface Development Environments)

large applications the stubs of code controlling actions can range across many files. With

Interface builder it only tries to show code having to do with actions so it picks and

chooses what to show the developer. Any spatial sense the developer has for the code in

Xcode is lost when Interface Builder reformats it. I really don’t see a way around this

though since otherwise there would be too much un-needed information on the screen.

 Another problem arises when trying to test the code. The problem is the fact that

there is no code. The visual link between the object and the controller really is the only

way to see the information. Interface builder does not have to face the problem of trying

to interpret code from the user or to translate its actions into something readable. There is

simply no way to access the links outside of the visual representation which, as expected

for large projects, can get messy.

Model
 The model of the program is usually seen as where the data is stored. Others think

of it as the part of the program that exists outside of the user interface. Both ideas convey

the concept that this is something that exists for all applications. The ability to visually

see what is happening to the data as the program runs is something that would be useful

for most applications. This is probably why there are the most applications compared to

the view or controller that are devoted to allowing the developer to view this. Most of the

time this is seen as visually debugging the program.

 Being able to see the memory changes in a program is a lofty goal. Most of the

time that an application has need of tracking its data it has grown large enough that trying

to represent all the data and changes to that data at the same speed that the application is

Mark Bailey 5
CS 510 User Interface Programming
 UIDE (User Interface Development Environments)

running at is either impossible or would be such an over load of information that it would

not be useful.

 Another problem is that outside of graphs there are a lot of algorithms that do not

have an easy way to visualize what is happening to the algorithm. This is simply a

complexity problem. At some point in the future people should find a way that the human

mind can understand larger amounts of data; most likely with the help of more processing

power that will be required to display that information.

 For the evaluation for this presentation I used ddd, which is most likely the most

popular program for graphically viewing the memory usage by an application. To keep

the amount of information being presented to a minimum the variables to be tracked must

be selected and break points put in to stop the program at specific points for viewing.

Visual Programming
 There are a lot of software projects that are trying to side step the problem of

translating back and forth between the machine-generated code created and code created

by the developer. The way they are doing this is through the use of visual programming.

The concept is that, unlike normal programming languages, visual programming

languages syntax is conveyed through form and images.

 These types of languages are usually thought of for helping those who are not

familiar with the constructs of computer science to be able to program such as in the case

of teaching children to program using Alice. However there are many other uses. They

can be anything from automation programs that are linking other chunks of code together

or professional programs that are very visually based so they are easier to understand

through the use of pictures.

Mark Bailey 6
CS 510 User Interface Programming
 UIDE (User Interface Development Environments)

 To practice visual programming I used Automator for the non-professional side

and Quartz composer for the professional program. Automator allows linking small bits

of already created code to each other allowing multiple application to be scripted

complete with joined output without needing to type anything. It works good for easy

tasks but will fall apart as expected in situations where the needed code does not already

exist. Quartz composer is used to create graphical output of three-dimensional objects.

All information can be linked to each other. It was easy to understand what was going on

in the program, which is something unusual for the three-dimensional programs. As far as

I used it, it appeared to be easy to learn. For more difficult tasks there might be limits

reached but I could not find them in the short time using it.

Conclusion
 One problem that is always present with the display of visual information is

accessibility. It is hard to translate information back and forth between visual and non-

visual and those that do not have sight would have a hard time understanding a lot of

what was discussed. In some cases such as Interface builder’s controller links there is no

way.

 The constant theme throughout has been the difficulty in trying to keep the

information that is computer generated and what the developer is inputting to stay

synchronized. There is no easy way to do this as was shown and this problem has not

been fully solved but there are many different ideas and they can all help a developer to

create a user interface faster and easier with a UIDE.

Mark Bailey 7
CS 510 User Interface Programming
 UIDE (User Interface Development Environments)

References:
J. Foley, W. Kim, S. Kovacevic and K. Murray. UIDE - An Intelligent User Interface
Design Environment. In J. Sullivan and S. Tyler (eds.), Architectures for
Intelligent User Interfaces: Elements and Prototypes, Addison-Wesley, 1991.

Visual Programming information:
http://en.wikipedia.org/wiki/Visual_programming

Interface Builder:
http://developer.apple.com/documentation/DeveloperTools/Interfa
ceBuilder-date.html

Automator:
http://www.apple.com/macosx/features/automator/

Quartz Composer:
http://developer.apple.com/documentation/GraphicsImaging/Conc
eptual/QuartzComposer/index.html#//apple_ref/doc/uid/TP40001
357

ddd:
http://linuxgazette.net/issue73/mauerer.html

jSpy:
http://www.forwardlab.com/download.htm

.Net:
http://msdn2.microsoft.com/en-us/library/ms950416.aspx

Mono:
http://www.mono-project.com/Mono:OSX

