
1

Moving Programming
Languages from Batch to

Interactive Systems Support

Reading #2:
“An Input-Output Model for Interactive
Systems" by Mary Shaw, Proceedings of the
Conference on Human Factors in Computing
Systems (CHI86), 1986, pp. 261-273.

Classical Batch I/O

GUI I/O

2

Interactive I/O

• Interactive I/O is different
– Input is driven by events generated under the

control of a human being rather than a program.
Must synchronize timing. “Real-time control”
problem.

– Input is an interactive process requiring feedback.
(Input is conventionally treated as a simple parsing
problem.)

– Output device is a continuous sensor or observer
of the application software

– Output device displays 2 or 3 D graphic material

Problem
cont.

• Need a model that treats I/O as a
problem of converting

• between the data types of the program and
• some suitable types for direct transmission to

available I/O devices

Solution

• Create separate I/O state (in addition to
application program state)

• Separate I/O in application from I/O
handled by the operating system

3

Classical Batch I/O

• Simple formatted
input-output

• Consults format
information for each
value as it is
converted

 sequence
 of
characters

External World

 integer
 float
 vector []
 record []
 enum
 MyType1
 MyType2

 The Program

OUTPUT

INPUT

2-D Bit mapped Graphic Display,
Keyboard & Pointing Device I/O

 image =
 {string |
 l ine |
 shape}

 sequence
 of
 tokens
 token =
 {char |
 X,Y}

External World

 integer

 float

 vector []

 record []

 enum

 MyType1

 MyType2

 The Program

OUTPUT

INPUT

proto-image

I/O
State

c

o

n

v

e

r

s

i

o

n

UIMS

(Still does
not address
timing
issues)

From Batch to Interactive I/O
A Formal Description

• Primitive I/O (model 1)
In: seq-of-char --> Pi
Out: Pi --> seq-of-char
 where Pi is a primitive type

Example: INPUT X or PRINT X
• Add Formatting (model 2)

In: seq-of-char x Fin --> Pi
Out: Pi x Fout --> seq-of-char
 where Pi is a primitive type; F is formatting
– Example: PASCAL read(x) or

print(x:5:2)
 prints a floating point with 2 decimal places

4

From Batch to Interactive I/O
Model 3

• Add I/O state such as page numbers
In: seq-of-char x Fin x IOState --> Pi x IOState
Setup: IOState x --> IOState
Out: Pi x Fout x IOState --> seq-of-char x IOState
 where Pi is a primitive type; F is formatting

Example: FORTRAN
100 FORMAT (‘New page header’, (/10(F10.2,2X)))
200 WRITE (6,100) V

prints a vector V beginning on a new page, 10
elements/line

From Batch to Interactive I/O
Model 5

• Add 2-D, interactive input
In: seq-of-token x Fin x IOState --> Pi x IOState
Setup: IOState x --> IOState
QueryStyle: IOState x --> {Fin , Fout , Fcomp }

Compose: ProtoImage x Fcomp x IOState --> Image x
IOState

Out: Pi x Fout x IOState --> Image x IOState
 where Pi is a primitive type; F is formatting

Example: scrollbar widget

From Batch to Interactive I/O
Model 6

• Add user-defined types, 2D display, interactive
input
In: seq-of-token x Fin x IOState --> {Pi , Ti} x IOState
Setup: IOState x --> IOState
QueryStyle: IOState x --> {Fin , Fout , Fcomp }

Compose: ProtoImage x Fcomp x IOState --> Image x
IOState

Out: {Pi , Ti} x Fout x IOState --> Image x IOState
 where Pi is a primitive type; F is formatting; Ti is user-

defined type
NOTE: Must have a mechanism for registering these definitions

with I/O control so they can be appropriately invoked.
Example: Java new class called “fancy scrollbar”

5

From Batch to Interactive I/O
Summary

• Add I/O state to program
– Actual output of system influenced by information

about the state or history of the input and output
transactions

– Example: page numbers
• Add sensitivity to event timing

– Feedback from system must be synchronized with
input from the user

– Screen must be kept continuously updated if
stored values change

– Support asynchronous input from user
• Processing of “terminate this process immediately” must

not wait until the current process terminates on its own.

From Batch to Interactive I/O
Summary

• Must support graphics, video and sound as
I/O types
– Graphics plus text and other “natural data types”
– Continuous image
– Data changing with time, i.e. animation, video,

sound
– Allocation of space on the display

• Interactive input must provide feedback to
user

• Allow user-definable data types to extend to
I/O

Implications

• Decoupling of application from interface
• Strong linkage between display and program

– Display reflects current program state at all times
• Freedom without license

– Uniformity of interface style is an advantage, but
users may want and need to tailor the interface to
their own organization and style

