
1

UIMS/Windowing Systems

Reading #3: "Chapter 4.1-4.2 Basics of Event
Handling" by Dan Olsen, Developing User

Interfaces, 1998, pp. 89-104.

Seeheim Model (1985)

• Definition
– Separates UI code from application code
– Provides UI tools to programmer

• User-Interface Management System (UIMS)
– analogy to DBMS
– UIMS is the run-time system
– UIDE (User-Interface Design Environment) is the

development tool

User Interface Operating
Systems

Types

• Kernel-based Operating Systems

• Client-Server Operating Systems

2

User Interface Operating
Systems

• Kernel-based Systems
– Services provided through code in the

machine’s operating system
– Application makes calls to the operating

system for interface system resources
– Device-dependent code
– Fast and efficient, not extensible
– Examples: Classic Macintosh Toolbox and

Microsoft Windows

User Interface Operating
Systems

• Client-Server Systems
– “Clients” or application programs communicate

with the “server” to request resources (such as a
new window) and services

– Several clients can access one server
– A client can have connections to multiple servers
– Applications can share resources
– Can be distributed over a network
– Device-independent code
– Extensible, not part of any machine’s operating

system
– Examples: XWindow and NeWS

Client-Server Model
X Window

OS

Window

System

Cl i ent Cl i ent

Appl i cati on
Other

App

Other

App

Ser ver

mousekeyboar d

dr aw commands

events

user

events

scr een

3

X Environment Processes
• X server for each display

– manages display’s hardware and window hierarchy
– draws graphics, generates events
– if Xterm, server is on client side system
– if workstation, server is in workstation

• Window manager, one for each display
– allows user to manipulate top-level window in uniform

way for all applications
– displays decorative frame around window
– provides controls: move, resize, iconify, deiconify
– title

• Application
– communicates with X servers and window managers

• uses network protocol such as TCP/IP

X Window Components

Types of UIMS Software

4

X Window System Program
 (at the Window Manager Level)

Kernel vs Client-Server
Systems: Summary

• Kernel-based Systems
– Device dependent
– Not extensible by programmer or user
– Single System UIMS
– Fast
– Sparse code

• Client-Server Systems
– Device independent
– Extensible
– Network-based UIMS
– Slower
– Huge code

Who does what to whom
where? Simple Drawing Application

Who draws what?
Drawing a rectangle inside

the draw window
Moving and resizing a

window
How does the app know

what to do and when?
Click outside window
Click in window close box
Click in icon panel
Click inside draw window

5

Division of Responsibility
• What the UIMS must do

– Draw each icon on the
screen

– Draw each object in the
drawing window

– Dialog handling
• get a mouse input &

decide which icon was
selected

• based on the icon
selected, gets inputs for
the object to be drawn

• draws the object & adds it
to the list of objects
maintained by the
application.

Division of Responsibility
Application Code
if line-icon chosen,

DrawLine(X1,Y1,X2,Y2)
if rect-icon chosen,

DrawRect(X1,Y1,X2,Y2)
if poly-icon chosen,
 do:
 get X,Y points
 StartPoly(X,Y)
 AddPolyPoint(X,Y)
 if poly-complete,
 EndPoly()

Who Does What? Output

• Window Manager
– Arbitrates which event goes where

• UIMS
• application
• Examples

– move a window doesn’t matter to the application
– menu item selected matters to the application

– Manages redrawing and repainting screen
• Knows where windows are
• Examples

– cursor movement
– resize window

6

Who Does What? Input

• Window Manager
– Arbitrates which input event goes where
– Mouse/Keyboard Hardware

• generates stream of keyboard and mouse
events

• Passed to appropriate application

Who Does What? Control

• Window Manager
– Controls all events to the UI

• Sequentially ordered and processed
• Events ordered by timestamp and priority

– Events typed by priority
– Terminate application (“quit”) highest priority

– Uses “event-loop” and a priority queue
• Events handled asynchronously (older systems used

“polling” system)
• Macintosh and Microsoft Windows have only one queue
• Multi-tasking OS (e.g. X Window) has a queue for each

process

UIMS Event Types
• Input Events

• Mouse Buttons
• Modifier Keys (Shift, Control, Meta, Option, etc.)
• Double-Clicking, triple-clicking
• Function Keys
• Mouse Movement
• Mouse-Enter & Exit
• Keyboard

• Windowing Events
• Create, Destroy, Open, Close, Iconify, Deiconify, Resize

• Redrawing Events
• Pseudo-Events: communication between objects

7

Who Does What?

• Application
– in-window event handling then passed to

UIMS
– creates within window images
– triggers redraw

What is a window?

• Windows can be much more than the
traditional window
– Widgets
– Toolkits of widgets incorporated into the

window manager

Some confusing terminology!

 X Window

Application

CLIENT

UNIX

 Wor k

 Station

SERVER

SERVER

CLIENT

 WEB

 Site

 Wor k

 Station

8

Seeheim Model
 Advantages

• UI Code Advantages
– Re-useable therefore economical to produce
– UI consistency
– Flexibility in design - easy to change
– Allows non-specialist involvement

• Application Code Advantages
– Code is better structured (decomposition by

function) therefore fewer bugs
– Reliability is high since high-level tool generates

UI code
– Device dependence isolated in UI therefore easier

to port

A Question to Keep Asking
Yourself

Can we completely separate the UI from
the application?

