
1

Detailed Event Handling

Reading #4: "Chapter 4.3-4.6 Basics of Event
Handling" by Dan Olsen, Developing User
Interfaces, 1998, pp. 89-104.

Part I
How are events managed by

the UIMS?
• Events are typed

– What kind of event is it?

• Events are filtered and processed
– Who has to deal with it?

• Either windowing system or to application or
none

UIMS Event Types
• Input Events

– Mouse Buttons
– Modifier Keys (Shift, Control, Meta, Option, etc.)
– Double-Clicking, triple-clicking
– Function Keys
– Mouse Movement
– Mouse-Enter & Exit
– Keyboard

• Windowing Events
– Create, Destroy, Open, Close, Iconify, Deiconify,

Resize
• Redrawing Events
• Pseudo-Events: communication between objects

2

How are events managed by
the UIMS?

cont.
• Events are filtered

– Either windowing system or to application or none
• Event priority queue managed by OS
• Ordered by

– Priorities pre-set by OS for event types
– Timestamp

• Macintosh and Microsoft Windows have only
one queue

• Multi-tasking OS (e.g. X Window) has a
queue for each process

Macintosh Event Priority
Queue

• Activate event:
activate specific
window

• Disk event: Insert
diskette

• Auto-key event:
repeated key

• Update event:
redraw window

How are events managed by
the UIMS?

cont.

• Events are records sent by the
windowing system to the application
– name of event
– timestamp
– event-specific fields such as XY location for

pointing device
– widget object or window ID

3

UIMS Event Processing

Event Record

Event = Record
EventCode: Integer;
MouseX, MouseY:Integer;
EventValue: Integer;
Time:Integer;
WindowID:Integer;

End;

where EventCode “1” for mouse button;
 EventValue “2” for down

How are events managed by
the UIMS?

cont.

How does the windowing system associate the
event with a window?

Called “event dispatching”

– Hierarchy of windows
• bottom-first processing

– Input focus
• Currently selected window receives all key & mouse

events

4

Event Dispatching
Hierarchy of windows

Part II
 Event management within the

program
• Main Event loop

– Procedural languages
• Explicit main event loop
• Procedure name, event table, callbacks

– Object-oriented languages
• Implicit main event loop
• Event handlers

Explicit Event Handling in the
Application Program

• Trap calls to ROM-based Toolbox code
– Example: Macintosh Pascal would use “case”

statement

• Event-table
– Each window has a pointer to an event table for

each possible event
– Event table has addresses for procedures to

handle various event types
– Example: Applications written completely in C

5

The Main Event Loop

Explicit Main Event Loop

Explicit Main Event Loop
cont.

6

Big Problem: Hooking the
UIMS and application back

together
• How does the UIMS send the

application the information to process
the correct semantics for an event?
– Can associate application procedures

directly by name
• Kernel models

– Can associate application procedures
through callbacks

• Client-server models, e.g. Motif

UIMS to Application
Semantics

Associating Procedure Names or
Addresses

Application
Source

Object
Code

Executable
Program

Libraries
Dialog Description

Source Code
(Pascal or C)

Dialog Description

Run-time
Program

Link

Compile

Link

UIMS Generator

UIMS Run-time
Routines

Dialog Manager

UIMS to Application
Semantics Example: Simple Drawing

Application
Application Semantics
if line-icon,

DrawLine(X1,Y1,X2,Y2)
if rect-icon,

DrawRect(X1,Y1,X2,Y2)
if poly-icon,
 do:
 get X,Y points
 StartPoly(X,Y)
 AddPolyPoint(X,Y)
 if poly-complete,
 EndPoly()

7

UIMS to Application
Semantics

 Associating Procedure Names
• In the application program, the command is

associated with a procedure name and event
record

Procedure DoSemanticCommand (CommandNum:Integer; Evnt:
EventRecord);

Begin
Case CommandNum Of

0: DeleteLine(Evnt);
1: DrawLine(Evnt);
2: DeleteCircle(Evnt);
3: DrawCircle(Evnt);
4: QuitProg(Evnt);

End;
End; {DoSemanticCommand}

UIMS to Application
Semantics

 An Event Record
Event = Record

EventCode: Integer;
MouseX, MouseY:Integer;
EventValue: Integer;
Time:Integer;

End;

where EventCode “1” for mouse button;
 EventValue “2” for down

UIMS to Application
Semantics

Callbacks
Application

Source

Object
Code

Executable
Program

Libraries

Dialog Description

Dialog Description
Binary

Run-time
Program

Link

Compile

Link

UIMS Compiler

UIMS Run-time
Routines

8

UIMS to Application
Semantics

Callbacks
• XWindow Code

void EnterCallBack(CmndName, CmndProc)
char * CmndName;
SemanticCommand CmndProc;
{ }
SemanticCommand LookUpCallBack(CmndName)
char * CmndName;
{ }

• Application Code
EnterCallBack(“DeleteLine”, DeleteLine);
EnterCallBack(“DrawLine”, DrawLine);
EnterCallBack(“DeleteCircle”, DeleteCircle);
EnterCallBack(“DrawCircle”, DrawCircle);
EnterCallBack(“QuitProg”, QuitProg);

Implicit Main Event Loop
• No explicit main event loop: no “case” or

“switch” or callback statements
• Abstract class called, for example,

“WinEventHandler”
– has methods which associate all windowing

system events
– SetCanvas, MouseDown, MouseMove, Redraw

– O-O program creates a sub-class, an event
handler object, for each window created

– NewWindow(EventHandler)

• Each widget inherits its event processing from
its parent
– Example: Java, Tcl/Tk

Implicit Event Loop in
Application (LISP CLOS)

(SETQ WorkWindow
(CreateWindow 205 307 185 295 2))

(while (InRegionP (MouseCoords)
(fetch ImageRegion AndGateDescr)

and not (KEYDOWNP ‘LSHIFT)
do
(replace CurrentCursorCoords

(MouseCoords)) (if (EQ
(BUTTONSTATE) ‘LEFT) then
(RETFROM ‘Tracker]

9

Implicit Main Event Loop
Tcl/Tk

• Each Tk widget is a window
• Each widget has pre-defined event handlers

– Example: Button widget responds to mouse button
• Can attach a Tcl script to an event handler to

process application semantics for widget
– Example: Bind command

• Other events in event queue
– “after” generates timer event (used for animation, etc.)
– “fileevent” when file descriptor becomes readable or

writable
– Process redraws after input events

Tcl/Tk Example

Tcl/Tk Program
Dialog Box example

10

Tcl/Tk Program
 Dialog Box example cont.

Tcl/Tk Program
 Dialog Box example cont.

Tcl/Tk Program
 Dialog Box example cont.

11

Summary
• All UIMS systems use an event model
• Events are typed

– input, output, pseudo
• Events are filtered

– Either windowing system or to application or none
• Events are stored in a priority queue

– associated with a specific window in a hierarchy
– passed to the application through a event record

• Application programs process these events
– explictly with a main event loop
– implicitly in O-O languages with event handlers

