
1

Widget Toolkits

Lecture 7
CIS 410/510 UI Programming

Winter 2007

User Interface Objects
Topics

• Object-Oriented Approach
– Programming languages
– UIMS Toolkits

• Resource Definition Files
• Composite Objects
• Multi-Media
• Geometry Management
• Cross-Platform Implementation
• Limitations and Benefits

Object-oriented Programming:
Why is it so useful for GUI programming?
• Encapsulation

– Each object has its local data and local
procedures

– Creates modularity
– Programming objects map directly onto graphical,

manipulable interface objects
– Message passing control is event-based paradigm

• Class inheritance
– Similar objects grouped together at levels of

abstraction (Class/subclass relations)
– Share code through inheritance of similarity,

promote reuse of commonly used objects

2

Encapsulation

Class Structure

Object

displayObject

Window Menu

StringNumber Collection

SetList

S t a c kQueueDocument Control

with

Close

Box

w/o

Close

Box

Dialog

Box

Alert

Box

Pu l l -

Down

Pop-

Up

Class Structure with Instances

Object

displayObject

Window Menu

StringNumber Collection

SetList

StackQueueDocument Control

with
Close
Box

w/o
Close
Box

Dialog
Box

Alert
Box

Pull-
Down

Pop-
Up

•myWindow

Pen

•scribe
•box1

Box

3

O-O Programming
Pen Example

• Create Instance of
Class

– message (object, method,
name, Xlocation, Ylocation, tilt,
size, color)

– message (box, make-instance,
box1, 200, 200, 0, 20, black)

• Display
– message (box1, show)

• Increase Size
– message (box1. grow, 30)

• Move
– message (box1, move, 400,

200)

UI Object-Oriented
Programming

• UI objects in O-O language
– Smalltalk, C++, Java
– Mapped onto Windowing System

• UI objects in UIMS Toolkits (Widgets)
– Xtk, Motif, Tcl/Tk
– Mapped onto Windowing System
– O-O inheritance often not accessible to

programmer
– Often not extensible
– Can’t interact with each other through programmer

Widget Class Hierarchy
Tcl/Tk Example

Where do
these go?

• Listbox
• Scrollbar
• Scale
• Menu
• Canvas
• Text

Frame

 Label

Button

Simple
Button

Check
Button

Radio
Button

Message

(colored rectangular
region)

(displays text or bitmap)

(responds to
mouse)

(displays
multi-line
text)

4

Widget Resource Files
• Variable data of a widget stored in a file
• Can be edited by the user & read at run-time

by the UIMS when client requests creation of
widget

• Independent from application code
• Macintosh model

– stored in “resource” fork of the program
– edited by a program called ResEdit

• Client-server model
– stored by UIMS
– edited by text editor

Resource File
Xtrinsics Example

Widget Composite Objects

• Composite Object can have children
– not a subclass-class relation, i.e. not

specializations
– instead, part-whole relation

5

Menus as Composite Objects

More on Composite Objects
• Composite object allows run-time hierarchy in

which position of child is specified relative to
parent, therefore movement occurs automatically

• “Container” object has size, position, children, but
no interaction of its own
– Example: “Frame” in Tcl/Tk

• Containers can be children of other containers
• Event propagation by parent notification

– If user generates move event that is not of interest ot a
particular object, it gets passed up the hierarchy

– Example: move to dialog box passed to container which
is parent

Composite Object
Tcl/Tk Dialog Box

6

Integrating Multimedia into
Toolkit Widgets

• Requires widget to support multiple media
technologies such as audio, computer-
generated animation, and full-motion video

• Example
– Window with a set of buttons for controlling a sub-

window of full-motion video
– Functions: Stop, Play, Fast Forward, Reverse,

Single Frame
• At the moment, this is very much a research

issue!

Geometry Management

• Related to Composite Object

• Some toolkits have automatic geometry
management of children by parent
– Parent determines overall size and position
– Parent determines size of child within a range
– If child is parent of embedded objects, it informs

them of new size, and so on
– Sometimes child and parent may negotiate

• child gives minimum size
• Example: if text field is too small may change to icon

The Geometry Manager

Geometry
Manager

Requested size
from slave
(e.g. length of text)

Parameters from
programmer

Geometry
of Master

Sizes & locations
of slaves

Requested size
for master

7

Geometry Management
cont.

• Form of constraint-based programming
• Frees application from responsibility for

placing objects
– But lose design control for usability

• Example: Tcl/Tk “packer”is row/column
manager

• May be difficult to understand and program
– Example: Java’s GridBagLayoutManager

Tcl/Tk Geometry Managers

• “packer” for layouts with rows and columns

• “placer” for layouts with fixed position slaves
relative or absolute to master

• “grid” part of the canvas widget, allows mixing
embedded widgets with other elements such
as lines and text

Widget Cross-Platform
 Look & Feel

• Each virtual widget implemented in
windowing system widgets of platform

• Uses geometry manager

• May cause inconsistencies in usability
– Example: multiple mouse buttons
– Example: layout of icon panel on different sized

screen

• Frequently buggy!

8

Benefits of O-O Approach

• Reuse improves programming productivity
• Reuse improves standardization of UI look

and feel
• Natural cognitive mapping to concrete objects

improves programming productivity
• Modularity and inheritance reduce

programming errors

Limitations of O-O Approach

• May be difficult or impossible to change
UIMS Toolkit widgets
– Example: Drawing diagonal lines

Drawing Diagonal Lines
What you want

9

Drawing Diagonal Lines
 What you get: Athena Widget Toolkit

Widgets based on windows
with sides parallel to screen
Does it mean the same?

Limitations of O-O Approach
cont.

• UIMS Toolkits may not be first-class O-O
– hard to integrate into client application

• Hard to debug
– May not know the inheritance path
– Problems of multiple inheritance more confusing

• Learning difficult
– Often hard to choose widget needed because

behavior not obvious from class name
– Complex: must learn all classes and their methods

• Smalltalk has 200+ classes each with average of 4
methods

Summary
• O-O Programming is a natural match for UI

programming
– object mapping
– event-based control through messages
– reuse improves productivity and reduces bugs
– Model-View-Controller

• Becomes more limited as gains complexity
• Extensions to O-O paradigm motivated by UI

– Composite objects
– Geometry management
– Constraint-based programming

