
Novel Widgets and Toolkits For Creating Them
Rachel Nehmer

1. Introduction
I explored three different toolkits (SwingStates, subArctic, and MAUI) that provided custom widgets.
Two of these toolkits, SwingStates and subArctic, also provided interaction techniques that are aimed
at allowing the programmer to develop novel widgets. The third toolkit, MAUI, is a toolkit that
provides the developer of groupware applications with some built in groupware widgets and network
support. All three toolkits are Java libraries and extend some of the Swing widgets while adding some
new widgets as well.

2. The SwingStates Toolkit
SwingStates adds state machines to the tools available for Java GUI developers.[2] The state machine
is used as a control structure for keeping all of the interaction code in one place. What is most
appealing about SwingStates is that you can design and implement an interaction technique separate
from the widget that will be using it. Also, once you implement your state machine, attaching it to UI
elements is very flexible. The following examples and illustrations are from the paper “SwingStates:
Adding State Machines to the Swing Toolkit” by Caroline Appert & Michel Beaudouin-Lafon.

2.1 Ideas Borrowed From Tk
SwingStates borrows some things from Tk that strengthen the programmers ability to use the
interaction techniques they may develop. First of all, it implements a canvas that behaves similar to
Tk's canvas. You have a display list of shapes, each shape can have a geometric transform, a parent
shape, and a clipping shape. The canvas makes it easier to draw and keep track of arbitrary shapes.
Secondly, SwingStates has the ability to add tags to canvas shapes as well as any Swing widget.
Because you can add state machines to tags, you really have a lot of flexibility in creating interface
components separate from the state machines. I plan on exploring this toolkit more to see how easy it
really is to create my own novel widget.

2.2 The State Machine
I think the hardest part of creating a novel widget is coming up with a useful and interesting idea. Once
you have formulated the idea and can translate the user interaction into a state machine then you have
done the hardest part. It is much easier to instantiate the idea and I will describe the process briefly.

The easiest way to implement a state machine is to first draw out the state machine that represents your
interaction technique. I will use the example of creating a state machine for dragging objects. I don't
need to know what objects these will be beforehand.

Once you have drawn out the state machine it becomes a matter of translating the diagram into code.
SwingStates uses inner classes heavily so you will have a StateMachine class that contains one or more
State classes with each of the State classes containing one or more Transition objects. The Transition
objects refer to other inner State classes and this is done by using a string in the constructor and then
using Java reflection to transform the string into a reference. At first glance the code for the above
example seemed a little funny but once I understood what was going on, it was very appealing. I liked
the tidy nature of the code.

Below is the SwingState implementation of the state machine from figure 1.

These particular Transition objects are from the set of canvas Transitions. The Transitions can cause
an action to be performed or just transition from one state to another (both types are seen above). As
you can see from the code above, the state machine is a self contained piece of code for implementing
interaction.

2.3 Attaching the State Machine
The state machine can be attached to a tag, a Swing widget, or a canvas widget (includes shapes). You
can either attach the state machine directly to the component by using the appropriate attach method
(i.e. AttachJComponent) or you can add the state machine as a listener of a component using the
method addAsListenerOf(JComponent). There are similar methods for tags and canvas widgets.

2.5 Some Novel Widgets
A list of check boxes that are selected by a crossing interface. Moving the cursor across a check box
will select or deselect it and the default of clicking on the box can still be supported.

2.6 Conclusion of SwingStates
I think SwingStates is a good toolkit because it is focused on improving the process of programming
interaction. The state machine gives us a way of representing the full interaction process and
separating it from the components so that the component does not need to worry about keeping track of
state. This separation makes for good programming and nice looking code.

3. The subArctic Toolkit
There are some similarities between subArctic[3] and SwingStates in the way they look at interaction.
Both toolkits use the state machine as a model for describing user input. They differ in the way that
they implement the model. subArctic uses dispatch agents to handle different types of input. The
examples and illustrations are from the paper “Extensible Input Handling in the subArctic Toolkit” by
Scott E. Hudson, Jennifer Mankoff, and Ian Smith.

3.1 Dispatch Agents
Dispatch agents work by defining an input protocol. If a component wants to be called by the dispatch
agent it needs to implement the Java interface defining the protocol. The protocol should represent an
input pattern. The idea is to define the full interaction sequence in the dispatch agent so that, once
again, the component does not need to keep track of what happened beforehand. All the component
needs to do is implement the protocol interface and not worry about the user events. This is useful
because the user may change input devices and the only thing that would need to change is that we
would need a dispatch agent that interprets the devices input.

3.2 Picking
One thing subArctic does that is unique is that it allows the programmer to have control over what
object is picked when a selection occurs. This is useful because there may be more than one object
under the cursor and you may want to pick both of them. Normally, the highest priority object (the leaf
node in the interactor tree) is picked but we could have the parent of this node be picked instead.

The following is a container that changes the picking order by adding itself to the picking collection
and then adding all of its children. Any widget can be added to this shadow container and when the
user clicks on any widget in the collection, all of the widgets are picked and a “shadow” is drawn
underneath to enhance the feel of dragging the widgets.

3.3 Conclusion of subArctic
The subArctic toolkit was hard to evaluate because the website was a little out of date and
many of the demo applets failed to load for me. I think the ideas behind the toolkit are good
but I'm not sure how practical it is to use the toolkit for real development.

4. The MAUI Toolkit
I looked at both the MAUI (Multi-user Aware UI) toolkit[1] and Groupkit and there was a good deal of
overlap between the two. Both are toolkits for creating Groupware applications but Groupkit uses
Tcl/Tk and was developed much earlier than MAUI. MAUI uses many of the ideas from Groupkit but
also extends a large number of Java Swing widgets which allows Java programmers to use components
they are already familiar with.

4.1 Extending Java Swing Widgets
What MAUI does with Swing Widgets is attach additional event listeners that respond to both
awareness events (the cursor moving into a button) and action events (button pressed). These
additional listeners are responsible for sending relevant information out to the other users. The widgets
can be configured by the user to enable, disable, or modify awareness. The default values for widget
awareness can be set by the programmer. Many of the widgets have more than one form of awareness.
For example, there is the option of a shared or multi-user scrollbar. In the shared version, when a user
moves the scrollbar it is updated in all user views. In the multi-user scrollbar, when a user moves the
scrollbar a highlighted version of their scrollbar and selection is drawn in all user views.

The nice thing about extending the Java Swing widgets is that you can use a combination of shared
components and single user components. All you have to do is add the appropriate event listeners to
the shared widgets. I think the use of familiar Java Swing widgets is the MAUI toolkit's strongest
feature.

4.2 Widgets Borrowed
MAUI borrows the telepointer widget and the participant list widget from earlier groupware
toolkits. The telepointer is especially useful because much is conveyed in gestures and being
able to gesture in groupware is very important. One of the papers I read explained that when
observing a group of people at a whiteboard, more gesturing occurred than actual writing or
drawing on the board.

4.3 Java Beans
Packaging the components as Java Beans allows the toolkit to be used in IDEs like JBuilder. The video
demonstration of the MAUI toolkit is done in the JBuilder IDE and it seems very easy to use. I do not
use an IDE so I did not attempt to integrate the MAUI toolkit but it would be interesting to see how
long it would take to develop something like a shared whiteboard.

4.4 Conclusion of MAUI
I think MAUI has good potential and I hope the people working on it continue to do so. MAUI does all
of the work relaying awareness information over the network which gives programmers some free time
to come up with interesting applications. This is another toolkit that I would really like to try using.

5. References
[1] Appert, C. & Beaudoin-Lafon, M. (2006) SwingStates: Adding State Machines to the Swing
Toolkit. In Proc. ACM UIST '06, pp 319-322.

[2] Hill, J. & Gutwin, C. Awareness Support in a Groupware Widget Toolkit. Computer Supported
Cooperative Work. 13(5-6):539-571, 2004.

 [3] Hudson, S. E., Mankoff, J., and Smith, I. (2005) Extensible input handling in the subArctic toolkit.
In Proc. ACM Conference on Human Factors in Computing Systems. CHI '05. ACM Press, pp 381-
390.

