
CHl’86 Proceedings April 1986 

An Input-Output Model for Interactive Systems 

Mary Shaw 

Computer Science Department 
and 

Software Engineering Institute 
Carnegie-Mellon University 
Pittsburgh, Pa 15213 USA 

Abstract: Interactive user interfaces depend critically 
on underlying computing system facilities for input and 
output. However, most computing systems still have 
input-output facilities designed for batch processing. 
These facilities are not adequate for interfaces that rely 
on graphical output, interactive input, or software con- 
structed with modern methodologies. This paper details 
the deficiencies of batch-style input-output for modern in- 
teractive systems, presents a new model for input-output 
that overcomes these deficiencies, and suggests 
software organizations to take advantage of the new 
model. 

1. Introduction 
Input and output are perhaps the most systematically 

neglected features of programming languages. They are 
usually ad hoc, and they are usually poorly integrated 
with the other facilities of their hosts -- the languages in 
which they are embedded. Input and output are 
generally supported only for the primitive scalar types of 
the host languages, although they are occasionally sup- 
ported (though usually in an inflexible way) for nonscalars 
such as records and arrays. 

The situation was bad enough before the introduction 
of abstract data types and interactive graphic displays, 
but these additional complications have overburdened 
the classical ad hoc input and output mechanisms 
beyond their design limitations. It is now time to develop 
a sound model for input and output that will address the 
problems introduced by modern programming technol- 
ogy. Such a model will help to put classical input and 
output on a solid footing; it will also provide a basis for 
abstract data types and interactive systems. 

Interactive input and output are fundamentally dif- 
ferent from conventional implementations of input and 
output in two ways: 

Permission to copy without fee ail or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

0 1986 ACM 0-89791-180-6/86’0400 - 0261 $00.75 

. The output device serves as a COntinUOUS SsnSOr 

or observer of the application software and 
provides current information about the state of the 
computation, whereas conventional input and out- 
put provides information to the human user Only 
when the application software chooses to repot 

l Input is an interactive process requiring feedback 
(sometimes from the application software that will 
receive the input), whereas input is conventionally 
treated as a simple parsing task. Moreover, inter- 
active input is often under control of the human 
user rather than the program, yielding an event- 
driven system rather than a program-driven one. 

The model developed here explains both conventional 
input-output and the newer, event-driven view of inter- 
action. 

This paper begins by suggesting an informal model of 
input and output that explains classical -- that is, batch- 
oriented -- input and output. It then describes the 
problems introduced by modern programming technology 
and extends the model to deal with them. The paper 
closes with some remarks on experience with software 
organizations to support the model. 

2. Classical Input and Output 
Input and output facilities in programming languages 

are responsible for receiving input data from the external 
world and for returning output to the external world. In 
order to do this, these mechanisms must be able to con- 
vert input data to the internal representations used by the 
program and then convert the internal representations 
back to output form. Thus, the crucial issue for input and 
output is change of representation for given data values. 

We are concerned here with input and output between 
programs and humans rather than with communication 
among programs or between programs and mass 
storage. We are interested primarily in imperative 
(Pascal-like) languages, but most of what we say applies 
to other classes of languages as well. The model relies 
heavily on the use of abstract data types -- either with or 
without direct language support. It has also been in- 
fluenced by the object-oriented style of program or- 
ganization. 

The programming languages of the 1960% and 1970’s 
provided specialized input and output facilities for 

261 



Cl-l 1’86 Proceedings April 1986 

The External 
Program World 

Figure 1: Simple input-output requires conversion between data types’of the 
program and specialized types suitable for direct transmission to physical 

input and output devices. 

processing individual lines of text or streams of charac- 
ters. The roots of these mechanisms lie in batch 
processing, and interactive computing using conventional 
video terminals (CRTs) still largely continues this tradi- 
tion. 

This section develops a model that treats input and 
output as a problem of converting between the data types 
of the program and some specialized types suitable for 
direct transmission to the available input and output 
devices. This suffices to explain classical character-and 
line-oriented input and output. Section 3 extends the 
model to abstract data types and interactive systems. 

2.1. Minimal Input and Output 
At the very least, input requires conversion of data be- 

tween some specialized string type particularly well- 
suited for the input-output device (a device-relative type) 
and the built-in types of the program such as integers, 
floating point numbers, booleans, strings, etc. Likewise, 
output requires conversion between between the 
program’s built-in types and a device-relative string type 
well-suited to the output device (often the same as the 
string type used for input). We will let Pi denote any of 
the primitive data types of the programming language for 
which input and output are supported. 

The simplest possible view of input and output is thus 
that some simple string type, say seq-of-char, is built into 
the input-output system. This special type is not in 
general available for direct use by programmers. For 
most primitive types Pi the minimal input-output system 
provides built-in operations with signatures 

OUtI Pi --> seq-of-char 
In: seq-of-char --> Pi 

The functional specifications of these operations simply 
require correct conversion between the two represen- 
tations. This specification is essentially syntactic, so we 

do not provide formal pre- and post-conditions. Figure 1 
depicts the problem of simple input-output. 

In addition to the direct conversion operation, input 
and output operations usually have side effects on the in- 
put or output stream, such as extending an output file or 
truncating an input file. With allowances for the variability 
of these side effects, the model presented here applies 
both to stream and to line-by-line input and output. 

Default use of the input-output facilities of many lan- 
guages provides roughly this simple level of functionality. 
In Basic, for example, the commands 

INPUT x 
PRINT x 

encode the operations 

x = In(fnputStream]) 
Append(OutputStream, Out(x)) 

If the input stream contains “12.35”, the effect of these 
commands is to set the value of variable x to 12.35 and 
produce the output “12.35”. 

2.2. Formatted Input and Output 
The simple input-output scheme of section 2.1 is too 

restrictive for practical use, and virtually all languages 
support some means of influencing the details of format- 
ting. The formatting information is encoded in a special 
format notation. We will let Fin and F,,,,, denote input and 
output formats, respectively. The encoded formats are 
passed to the conversion routines along with the vari- 
ables. Thus the system provides operations with the 
functionality 

Out: P/X Foot --> seq-of-char 
In: seq-of-char x Fin 

--> Pa 
Figure 2 depicts the problem of sihple formatted input- 
output. 

262 



CHl’86 Proceedings April 1986 

The External 
Program World 

Figure 2: Simple formatted input-output consults format information 
for each value as it is converted. 

A variety of formalisms for formatting have been used. 
The details are not important here, but the essential re- 
quirement for a format notation is that it provide enough 
information to select from among the conversion alter- 
natives provided by the system. These examples from 
Fottran, C, and Pascal suggest the possibilities: 

Fortran 
99 FORMAT(F5.2) 

READ (599) X 
WRITE (6,99) X 

Pascal C 
read(x); scanf(“%f”,x); 
print(x:5:2); printf(“%5.2f”,x); 

If the input stream contains “12.35”, all these programs 
read that input and yield the output “12.35”. However, 
these commands have different effects when the input 
contains either more or fewer than five characters. 

The format languages for input and output, though 
deceptively similar, are actually not identical. For simple 
cases like field width or desired precision, the same ex- 
pression often has reasonable interpretations for both in- 
put and output. However, the output processor can make 
strong assumptions about the internal representation and 
the possible output forms, whereas the input processor 
must be prepared to handle any of a number of input 
strings, including erroneous formations. As a result, the 
rules for allowable input strings in any particular system 
may be rigid or fairly flexible. 

Format notations span a wide range of expressive- 
ness and power. In addition to specifying the rules for 
converting individual scalars, they may specify the way 
individual scalar values are arranged in the input or laid 
out on the output medium. Special syntax is often used 
to combine several individual input or output operations 
into a single invocation. As a result, most input-output 
systems do not provide precisely the operations 
described here. These operations do, however, explain 
the underlying functionality after the syntactic sugar is 
converted to calls on the basic operations. With the ex- 
tensions of section 2.3, they explain most existing for- 
matted input-output systems. 

The specifications of the In and Out operations must 
be refined to account for the format parameters, but the 
operations are still fundamentally syntactic: they require 
the conversion between the two representations to ad- 
here to the format restrictions and to be correct within the 
accuracy specified by the format. Thus detailed 
specifications of the operations ln and Out depend on the 
semantics of the p,articular format language being used. 
For purposes of this paper, the choice of format language 
is not significant, provided it can express at least the 
usual range of.variability. 

The operations presented here provide a model that 
explains the most significant characteristics of formatted 
input-output systems. Since the syntactic idiosyncrasies 
tend to obscure the essential character of input-output as 
a process of changing representations, they are ignored 
here. 

2.3. Realistic Input and Output 
Even with the addition of formatting, this formulation of 

input-output is still too restrictive, especially for output. 
The actual output of a system is often influenced by infor- 
mation about the state or history of the input and output 
transactions. For example, if.a table of numbers is being 
printed, the position of individual numbers on a line and 
the number of spaces produced between individual 
numeric values must be adjusted for column alignment. 
For a second example, the system may provide page 
numbers and column headers whenever a page fills up or 
may align columns on a page. Thus input and output for 
many systems require state information that persists 
beyond individual invocations of the conversion functions. 
Since this state is persistent, operations must be 
provided to initialize and manipulate it. These operations 
are commonly implicit in the format language. 

In order to explain actual input and output systems, 
we introduce an explicit state, /OS&ire. to capture the 
state of the input-output facility that persists beyond in- 

263 



Cl-i 1’86 Proceedings April 1986 

The External 
Program World 

Figure 3: Realistic formatted input-output requires history or state 
information in addition to formats for individual values. 

dividual primitive operations. This state influences the in- 
terpretation of both input and output operations, it can be 
manipulated either explicitly (by SetUp operations) or im- 
plicitly (as a side effect of In and Out operations. We 
also select a richer type than seq-of-char for the device- 
relative object type of the Out operation in order to sup- 
port full-page layouts. For the case of classical 
character-oriented output the output can be segmented 
into lines (with vertical alignment controlled by lOState), 
so we will use seq-of-line to represent the richer device- 
relative output type. Real systems therefore provide in- 
put and output mechanisms to support operations with 
signatures more like 

Out: Pi x Fout x lOState 
--> seq-of-line x lOState 

In: seq-of-char x Fin x lOState 
--> PiX lOState 

SetUp: lOState x . . . --> lOState 
The SetUp operation is only partially specified here: this 
definition is suggestive of a class of operations that take 
parameters appropriate to the state change being per- 
formed. The scope controlled by the input-output state 
need not be restricted to single phrases or lines. In RPG, 
for example, a page restore and new column headings 
can be generated automatically each time an output page 
is filled. Figure 3 depicts the problem of realistic for- 
matted input-output. 

The role of the state is demonstrated by the For-Iran 
format and statement 

100 FORMAT (‘1 New page header’,(/lO(F10.2, 2X))) 
200 WRITE (6,100) V 

These statements print all the elements of vector V, 
beginning on a new page with page heading, printing ten 
elements per line, until the vector is exhausted. The 
bookkeeping required to keep track of information such 
as the current position in the vector, the current column, 
and the current line depends on maintaining a correct 
representation of the current state of the output trans- 
action while it is in progress. With respect to our model 

of input and output, these Fortran statements form a 
composite operation that could be decomposed into Out 
format operations for the individual vector elements and 
blank spaces together with SetUp operations to handle 
the overall layout. 

3. Abstract Data Types and Interactive 
Interfaces 
The interface between people and computers is a criti- 

cal factor in effective computer use. This interface has 
become increasingly important with the advent of inter- 
active systems with high-performance graphic displays. I 
will now turn to the problems of input and output for such 
systems. 

As noted above, early interactive systems used input 
and output mechanisms designed for batch processing, 
simply treating the teletype as both an input and an out- 
put device. When video terminals replaced teletypes, we 
retained the same strategy (but we lost the ability to look 
back on the paper listing for results that had been 
produed a few dozen lines previously). The record of an 
interactive session that takes place in this mode, with 
line-by-line input and output scrolled on a display, is 
called a typescript. Typescripts are often discarded as 
they are displayed, but some systems provide a 
mechanism for logging them in a file. 

In a typescript-oriented system, the output is a 
program history -- a stream of snapshots of subsets of 
the program state. The subsets of the program state and 
the timing of the snapshots are controlled by the program 
that is executing. A system that provides only this form 
of output neglects the needs of the human user, who is 
often better served by a single, continuously updated, 
view of the program state. It ignores the advantages of 
providing the human user with control over the particular 
view to be displayed. In addition, it fails to exploit the 
human’s ability to use (and the terminal’s ability to 
provide) cues based on keeping current values of par- 
ticular information in fixed positions. 

264 



CH1’86 Proceedings April 1986 

In contrast, a two-dimensional interface presents a 
variety of information simultaneously and updates it 
dynamically; a given piece of information can be kept up- 
to-date in a fixed position. Work on text editors [Card 
83, Meyrowitz 821 and interaction techniques [Embley 
81, Hirsch 811 support the intution that two-dimensional 
displays are better than one-dimensional typescripts. 
Thus, the availability of inexpensive high-performance 
displays provides an opportunity for qualitiative improve- 
ments to interactive interfaces. Sophisticated display in- 
terfaces are currently difficult and expensive to develop, 
and a number of research projects are addressing 
various aspects of the problem [Baecker 79, de Jong 
80, Green 81, Guttag 80, Hayes 82, Kernighan 
81, Mallgren 82, Myers 80, Reisner 81, Rowe 
83, Teitelman 84, VanWyk 82, Wallis 801. The present 
work contributes a model for input and output that is com- 
plementary to those methodological explorations. 

Because the role of the human user is much more sig- 
nificant in interactive systems than in batch systems, the 
significance of the timing of input and output events is 
more critical in interactive systems. Sensitivity to event 
timing occurs in several ways. 

*The feedback provided by the system must be 
properly synchronized with input from the user. 
For example, if a system prompt is provided, it 
must actually be sent to the output device before 
user input is supplied. Further, feedback is usually 
provided to the user as each input phrase is 
developed. 

l Any system that allows the user to provide input 
values by pointing to values currently displayed on. 
the screen must be extremely careful to update the 
display whenever the stored values change. 
Otherwise the user may provide incorrect input by 
pointing to a displayed image that does not match 
the stored value that will be inserted in the input 
stream. 

l Interactive systems must cope with input provided 
asynchronously by the user: processing of the 
command that means “terminate this process 
immediately” should not wait until the current 
process terminates on its own. 

These timing issues force the implementor of the input- 
output system to rethink such issues as the use of buf- 
fers, the significance of system delays, and the use of in- 
terrupts. 

In addition, advances in software and hardware tech- 
nology have introduced new problems. These include 
system provisions for 

l Abstract data types (user-defined types): Ap 
propriate input and output conversions for user- 
defined types should be selected as part of the 
design of the abstract type. This requires type- 
specific knowledge, but conventional input-output 
systems (and the model presented in Section 2) do 
not provide a way to supply that information to the 
input-output system. Similar considerations often 
apply to primitive nonscalar types such as arrays 
and records. 

l Two-dimensional output: High-performance dis- 
plays provide a graphic capability that can enhance 

the quality of interfaces. This requires the ability to 
construct two-dimensional images that represent 
data values, but conventional input-output systems 
do not support graphics. 

l hteractive input: Interactive sytems must provide 
feedback to the user while he or she supplies input 
actions. In addition, input operations may refer to 
information that is currently displayed on the ter- 
minal. This requires active involvement Of the 
input-output system in feedback and the interpreta- 
tion of pointing actions, but this notion is entirely 
foreign to conventional input-output systems. 

We will consider each of these problems in turn, then ex- 
tend the informal model of section 2 to show how to deal 
with them. The purpose of this section is to present the 
problems introduced by modern programming systems. 
The next section proposes a model for input and output 
in such systems. 

3.1. User-Defined and Nonscalar Types 
During the 1970% work on abstract data types 

showed how to extend the set of primitive types provided 
by a language to include types defined by the user 
[Liskov 77, Shaw 811. One of the objectives of this work 

was for the programming language and support system 
to provide the same system support for types defined by 
the user as it provided for primitive types. Although the. 
work was generally successful, it did not succeed in 
providing genuine type extensibility for input and output. 

Full support for input-output in the presence of type 
extensibility (or even system-supported nonscalar types 
such as records) requires solutions to two problems 

l Providing the type-definer with control over conver- 
sion between internal representations and the 
device-relative types used for input and output. 

l Providing the type-definer with access to system 
input and output facilities, including the IOState, 
the facilities for constructing output renderings by 
composing renderings of components, and the 
facilities for parsing input streams. 

Thus, in order to make the input-output facilities ex- 
tensible to new types, it is necessary to provide a way for 
user-defined conversions to be added to the set of con- 
versions known to the input-output system. Some sys- 
tems provide default conversions from internal represen- 
tations to strings, but since these have no knowledge of 
the type abstractions involved, they can do no better than 
dumping the internal structure of the type. However, this 
is not sufficient. Consider, for example, a set 
represented as a vector (used for the set elements) and 
an integer (used for the current number of set elements). 
A common representation stores current set elements in 
the lowest-indexed array elements. A default output con- 
version could do no better than converting the integer 
and all the array elements to strings and inserting a few 
standard delimiters. A type-specific conversion, 
however, would convert only the active elements, 
separate them with commas, and add set braces at the 
front and back. The integer would not be converted for 
output: it would be used only to determine how many ar- 
ray elements to convert. 

265 



CH 1’86 Proceedings April 1986 

i 

Inout-outout 

t5 sequence q 

The 
Program . 

~cdnversidns with 
ormat support 

.._~._._...._._.. A /’ P- line 

External 
World 

Figure 4: input-output for user-defined and nonscalar types requires the 
formatting capabilities to be provided for all types, not just for primitive 

scalar Woes. 

Since user-defined types are often composite struc- 
tures whose elements are of other types, reasonable im- 
plementations of input and output must also be able to 
call on the input and output conversions of the other 
types as subroutines. In order for this to work, the 
device-relative types used for input and output conver- 
sion must be available to programmers as actual data 
types. (For this reason, type-specific routines that do in- 
dividualized conversion but interact directly with the input 
or output devices also fail to solve the whole problem.) 
This facility is not typically provided by conventional pro- 
gramming languages. There are some exceptions: the 
functions sscanf and sprintf in C and so-called “core-to- 
core” input-output in certain other systems allow the 
programmer to obtain the results of built-in input-output 
operations. However, even these systems do not allow 
user-defined types to be added to the built-in input-output 
conversion tools. 

For user-defined types, we will let Ti denote any user- 

defined type. Only the designer of the user-defined type 
Ti has enough information to know how to convert be- 
tween Ti and the standard special type used for input or 
output. In addition, proper formatting for nonscalars 
varies a lot from application to application. Therefore we 
need a richer input-output facility, one that supports user- 
defined types Ti wherever it supports primitive types Pr 
The required functionality is achieved by adding Ti to the 
set of types required by the signatures of the In and Out 
operations: 

Out: {PC T;} x Fout x lOState 
--> seq-of-line x lOState 

In: seq-of-char x Fi, x lOState 
--> {Pb T,j x lOState 

SetUp: lOState x . . --> lOState 
Although it is straightforward to extend the signatures of 
the specification, it is harder to implement the change. 
The type-specific conversion routines will be provided by 
the user program, and it is not practical to recompile the 
runtime system each time the set of types under con- 

. . 
sideration is changed. Therefore, in addition to allowing 
the programmer to define the operations themselves, the 
system must provide a mechanism for registering these 
definitions with the input-output control mechanism SO 
that they can be invoked as necessary. Figure 4 depicts 
the facilities required for input and output of user-defined 
and nonscalar types. 

3.2. Two-Dimensional Output 
The introduction of high-resolution, high-bandwidth 

displays has made a qualitative difference in the kinds of 
user interfaces that can be defined. The use of graphics 
literally adds a new dimension to the class of images that 
can depict data values, and the ability to maintain par- 
ticular data values at fixed locations on the display allows 
the user to take advantage of physical layout to avoid 
searching a typescript for information. Three new 
problems arise as a result of the new technology: 

. Conversion of internal representation to output 

form that includes graphics as well as text 

l Continuous maintenance of the image 
l Allocation of space on the display 

The power of two-dimensional interfaces is best il- 
lustrated with examples. Figure 5 shows the display 
during an interactive session using the Xerox Cedar pro- 
gramming environment [Teitelman 841. In this display, 
the bottom row of small images denote processes that 
are alive but not of current interest. Three processes are 
active, each within one window. The three windows are 
arranged so as to use all the display without allowing any 
window to obscure any of the others. At the top of each 
window and at the top of the screen, menus provide 
quick access to common commands. 

Figure 6 shows the Microsoft Chart application running 
on an Apple Macintosh. The program constructs plots 
from given data. One window is used for the data for 
each plot, and several plots can be combined in a single 

266 



CH 1’86 Proceedings April 1986 

Figure 5: Display layout in Cedar Documentation Browser. 

graph. This example differs from the previous one in 
several ways. First, the windows are allowed to overlap; 
simple user actions select the window that is active, or in- 
tuitively “on top,” at any time. Second, all the windows 
shown here belong to the same process. In particular, 
changes to either of the data windows are reflected in the 
window that contains the graph. 

of choices are possible, depending on characteristics of 
the graphics device, but they must support images that 
include at least character strings, lines, and colored 
(pattern-filled) areas. For the sake of discussion, we’ll 
call the type Image; it might be represented as a display 
list of strings, lines, and shapes. 

Decisions such as the number of windows to as- 
sociate with a process and the policy for sharing display 
space among several windows are included in the design 
decisions make when interfaces are created. 

Clearly, the sequence of characters is not an ade- 
quate internal representation for images directed to a 
graphics output device. Therefore, a new internal type 
for constructing the output image is required. A number 

User-defined types require the ability to create partial 
images and compose them to form the complete image 
to be displayed, just as they did for character-sequence 
output. Less obviously, this facility can be used to good 
advantage by primitive types of the programming lan- 

guage. Since two-dimensional images are richer than 
character sequences, the internal state required to com- 
pose them will also be richer. 

r & File Edit Data Gallery Chart Format 

1 OO.OMBits Prog Prod 
IOrder: 

1 O.OMBits 

.OMBits 

Year lY6b i 

1 
1968 I 

1970.5 j 

Onboard Code Size for Mann 
1973 I 0.262144 
1981 ; 16 

Figure 6: Display layout in Macintosh Chart application. 



CH 1’86 Proceedings April 1986 

The 
Program 

~cdnversidns with 
format support 

External 
World 

Figure 7: Two-dimensional output requires a significantly larger 
intermediate state and a richer target type. 

Graphics displays provide the ability to improve on the 
typescript mode of output as well as on the image 
generated for individual values. It is useful to regard the 
entire display as a single image that is built up from 
images of individual values. This decision allows the 
same mechanisms to be used for constructing images of 
individual values and for composing the entire display. 

When the problem is viewed this way, the generation 
of a partial image is similar to the generation of a single 
scalar value to print in a typescript. The partial image 
can be produced without binding all display decisions, 
such as color and position on the display. Decisions 
about the proper location of each image can then be 
represented in the internal state of the input-output sys- 
tem and used to bind any remaining decisions about the 
display when the partial images are composed into the 
complete display. 

A partial image can be generated with limited refer- 
ence to the internal state of the input-output system; all 
the information required can be encoded in the output 
format. We will separate this task of producing partial 
images from the task of composing several partial 
images into a displayable one. To describe this tech- 
nique for avoiding premature binding, we’ll call the partial 
images produced by type-specific routines Protolmages. 
Such images might iack information required for actual 
display, such as exact screen position. Further format in- 
formation, FcomP is then required to guide the composi- 
tion of partial images into complete ones. 

This results in a separation of concerns that assigns 
steps of the conversion task to software elements with 
appropriate knowledge 

l Type-specific routines convert from internal 
representations to Protolmage form; this conver- 
sion is influenced by format information Four 

l Composition of individual Protolmages into a com- 
plete display image is performed in a module 
devoted to interface management. This is the logi- 

cal locus of information about overall layout, which 
may be encoded as format information Fcomp 

l Actual display of a complete image is the respon- 
sibility of the implementation of type Image. 
In object-oriented terms, each of these steps would be 

a method of the appropriate type. 

The lOState contains the information to control for- 
matting and layout. A set of functions which we call 
generically QuerySry/e must be provided to extract per- 
tinent format information (e.g., Fin from the /ORare). 

We now need functionality like 
Out: {Pi, Ti, x Fout --> Protolmage 

Compose: Protolmage x Fcomp x lOState 
-> Image x lOState 

In: seq-of-char x Fin x lOState 
--> {P/v T3 x /OSfafe 

SetUp: lOState x . . . -> lOState 
QueryStyle: tOState --’ {Fin, Four, Lll& 

where we allow format information to be supplied to the 
composition stage as well as to the input and output con- 
versions for particular types. Figure 7 depicts the 
facilities required for two-dimensional output. 

These definitions provide the functionality for creating 
full-screen images that take advantage of graphics 
capability. We can now address the second problem of 
two-dimensional output, the continuous maintenance of 
the image. An interactive interface of this class presents 
the appearance of showing the current values of selected 
portions of the program state. It is important for the 
values on display to be as nearly current as possible, but 
relying on the programmer to insert output Statements Oc- 
casionally is not likely to achieve this objective. In order 
to keep the displayed image up to date with the executing 
program, we need an automatic mechanism for 
redisplaying elements of the program state whenever 
they change. This is part of the overall problem of timing, 
but most current programming languages do not provide 
adequate support for the task. 

266 



CH 1’86 Proceedings April 1986 

The final major problem of two-dimensional output in- 
volves allocation of space on the display. Unlike 
typescripts and paper listings, which may be of indefinite 
length, the screen of a graphics terminal is of limited size. 
As a result, it must be treated as a scarce resource and it 
must be subject to an allocation policy. If decisions about 
whether to display the values of variables are made on 
an individual basis, the space required to display the col- 
lection will often be much larger than the display. A good 
interface system should provide allocation policies to 
mediate this contention for the screen resource. This is 
logically the responsibility of a module devoted to inter- 
face management. tnformation about allocation deci- 
sions -- both requests and actual allocations -- is logically 
part of the lOState. Many different policies can be 
devised; the details of the policy are much less important 
than the existence of some policy. 

3.3. Interactive input 
The shift from batch to interactive systems involved 

the human user with the running program in a fundamen- 
tally new way. Rather than setting up input that predeter- 
mined the course of the computation, the interactive user 
could inspect intermediate results before deciding how 
the computation should proceed. This control is ex- 
ercised by performing input and output to a terminal that 
allows the user to see the output and provide the input as 
it is needed. However, interactive input differs in impor- 
tant ways from batch input. Three new problems arise 
because of the tight involvement of the human user with 
the system: 

l Feedback during input 
l Interpretation of pointing operations and inclusion 

of “clicking”, or non-keyboard input events 
l Timing considerations 
In an interactive system, the user expects to interact 

with the system, not simply to provide a stream of input 
characters. As a result, the input collection facilities must 
provide feedback while the user constructs an input value 
rather than simply waiting until a complete sequence of 
input tokens has been collected before starting to parse 
the input. This feedback may be a simple as echoing 
characters, processing backspaces, and supporting 
some sort of operation to cancel the phrase just typed in- 
stead of processing it. It may be as complex as validat- 
ing partial input to allow immediate correction or provid- 
ing default field values for an input record after some 
fields have been typed. 

Despite the attractiveness of viewing input and output 
as inverse operations -- a view which has been very use- 
ful in older systems with one-dimensional input and out- 
put -- the symmetry does not exist in modern interactive 
systems. In such systems, output combines text and 
graphics into two-dimensional images. The input, 
however, is still essentially one-dimensional; although it 
may contain pointing information in addition to alphabetic 
characters, it is still a sequence of discrete tokens. As a 
consequence, formats for input (F/n) and for output (f,,J 
must be treated separately. (Note also that the failure of 
the inverse-operation view increases the difficulty of 
making Unix-style combinations of programs that are in- 

dividually indifferent to whether they are communicating 
with humans or other programs.) 

When a pointing device (e.g., mouse) is supported by 
the terminal or workstation, the input process becomes 
more complex. The input Stream still consists O! a Se- 
quence of discrete tokens, but the tokens are drawn from 
an alphabet that includes special characters for extra 
keys, pointing information (cursor location), and perhaps 
timing information in addition to the characters of the al- 
phabet. This token stream is first converted to lexemeS 
in an alphabet expected by an application process then 
parsed by an appropriate type interpreter. As a result, 
the Signature of the input routine must be revised to 
operate on seq-of-token instead of seq-of-char: 

In: seq-of-token x Fin x lOState 
--> {Pi, T,) x lOState 

We regard the feedback provided by the user as transient 
output performed under control of the input format Fin 
coupled with automatic display of the input Value if the in- 
put operation changes a variable that is currently being 
displayed. Figure 8 depicts the facilities required for in- 
teractive input. 

A significant use of the extra tokens that denote point- 
ing information is to construct input by referring to infor- 
mation already on display. The two most common cases 
are menu selection and “cut-and-paste”. In both cases 
the lOState plays a crucial role in determining what infor- 
mation was selected. For menu selection it is only 
necessary to map the cursor position through the display 
representation to determine which option was selected. 
in the latter case, one or more pointing actions are used 
to select a value displayed on the screen. In addition to 
determining what was on display, the value selected 
must be converted to a form suitable for input manipula- 
tion. in some systems it is converted to a string and in- 
serted in the input stream, but this is not always possible. 
An alternative is to insert in the input stream a token con- 
taining a pointer to the selected value. In ail cases where 
input is created by reference to the display, it is crucial for 
the display to be consistent with the program state. 

The design of an interactive system must also take 
account of input that may be provided asynchronously by 
the user rather than in response to direct prompts from 
the running system. The model developed here does not 
adequately explain these timing issues. 

4. A Model for Interactive Input and Output 
In previous sections, I argued that input and output 

are much more complex and demanding tasks than their 
usual treatment would suggest. Certainly much more is 
involved for interactive systems than simply inserting in- 
put and output statements at selected points in the 
program. This section elaborates the model developed in 
section 2 in order to account for input and output in inter- 
active systems that support user-defined types. Specifi- 
cally, I propose that interactive input and output be 
modelled along the following lines: 

1. Legitimize the internal device-relative types used 
for input and output conversion. Input and output 
are based on types suitable for conversion to 



CH 1’86 Proceedings April 1986 

,III,“IU”~I”’ 

__ feedback 

-output 

“<I Y sequence ’ 
‘f-*,, of 

*, 
Input *** /zFw Li!l { char~pt) 

The ~cdnversidns with External 
Program 

format support World 
Figure 8: Interactive input requires interpretation of pointing operations 

and feedback during input. 

physical input or output devices. These types are 
usually hidden from the programmer. User-defined 
input and output, especially for user-defined types, 
requires user-defined operations on these types. 

2. Create a well-defined formatting stafe. Input and 
output are context sensitive. They depend on per- 
sistent program state and on the states of the input 
and output streams or devices. This state should 
be public and explicitly manipulatible by the 
program. 

3. Define types to support format descriptors that can 
be manipulated at run-time. Formatting infor- 
mation must be provided, often from a source other 
than the main computation (e.g., the input state). 
Moreover, this information must be processed by 
procedures in user-defined data types, so the 
representation of the format information should be 
comprehensible. 

4. Provide a mechanism for registering input and out- 
put routines for user-defined types. With the 
auxiliary structures described above, input and out- 
put can be treated as ordinary functions. Users 
can then add functions for new types. 

The effect of these steps is to make the mechanisms 
used for input and output publically available and acces- 
sible to the programmer. When these steps have been 
taken, we obtain a model for modern input-output 
mechanisms that includes the following components: 

l A device-relative type for data arriving directly from 
the input source: seq-of-token 

l A device-relative type for formatted values ready to 
send to the output destination: Image 

l Conversion operations between internal represen- 
tations and device-relative types: 

Out [Pi, TJ x Fouf --> Protolmage 
Compose: Protolmage x fcomp x lOState 

--> Image x lOState 
In: seq-of-token x F;,, x lOState 

--> {Pip TJ x lOState 

l One or more internal type(s) suitable for parsing in- 
put and composing output: Protolmage 

l A definition of the persistent input-output state, in- 
cluding display layout and a mechanism for 
automatically updating the display when necessary 

l Operations on the persistent input-output state: 
SetUp: lOState x . . --> lOState 

QueryStyle: IOState --' IFin Foufi Fcon7& 
l Format representations for input and for output, 

with format descnptors: Fin, Fco,,,,, F OUf 
l A facility for adding user-defined types or user- 

defined conversions for existing types to the sys- 
tem on a program-by-program basis. 
Like most models, this one can be instantiated in a 

variety of ways. For example, in addition to these primi- 
tive facilities, a programming language will provide com- 
posite operations to allow input or output for several 
values at the same time. However, the model is largely 
independent of particular input or output devices or or 
particular programming language syntax. Its chief 
deficiency is its failure to address timing issues. 

5. Experience with the Model and Software 
Development 
The model described here arose from work on Des- 

cartes, a system for spsecification and construction of in- 
teractive display interfaces [Shaw 831. A major purpose 
of Descartes is development of a software organization 
and specification system powerful enough to define a 
broad class of interactive styles, rather than the restricted 
range usuafly provided by User Interface Management 
Systems or software packages for constructing intractive 
interfaces. The model presented above arose as part of 
the Descartes project. 

Just as classical input-output systems fail to support 
interactive computing, the classical program Organization 
also falls short. Input and output through tyPeSCnPts as- 
sociate input and (especially) output operations with the 

270 



CHl’86 Proceedings April 1986 

running application code (the clienf). The result is a con- 
founding of responsibilities in which one programmer 
must be concerned simultaneously with the computation 
of the application and with decisions about what infor- 
mation is to be displayed, and at what times. 

In Descartes, we began with three principles for the 
design of interactive systems: 

l Strong linkage between display and program: The 
display should reflect the current program state at 
all times. 

l Decoupling of application from interface: The 
input-output interface should be separable from the 
main program. 

l Freedom without license: Uniformity of interface 
style is an advantage, but users need guidance 
about style and organization. However, decisions 
about display and interaction style should not be 
gratuitously preempted. 
Based on these principles, we established an explicit 

separation of concerns that led 40 a system organization 
with four distinct areas of responsibility: 

l The Client: The client component is concerned 
with the computation of the application of interest. 
Using techniques based on ideas from constraint 
systems and continuously-evaluating functions, we 
were able to trigger display updates managed else- 
where whenever information of interest was 
modified. This is critical to the separation of inter- 
face issues from the mainstream computation. 

l Type-Specific Input-Output: We established stan- 
dard signatures for input and output routines, 
provided routines with these signatures to handle 
the standard types, and thereby allowed user- 
defined types to be treated uniformly with built-in 
types. These routines were registered with the 
utility support code so they could be invoked when- 
ever they were needed. 

l Interface Control Module: Each client has its own 
interactive display interface (or possibly more than 
one). We localized the client-specific portion of 
the definition of this interface in a single module 
(which, of course, makes heavy use of the utility 
support). 

l Utility Supporf: These facilities do not arise without 
cost. We developed extensive runtime support for 
registering new types, triggering updates automati- 
cally, describing formats, and maintaining the I/O 
state of the system. 

6. Notes on Extensions 

The model developed here addresses both classical 
one-dimensional input-output and interactive input and 
graphical output for a single application process. This 
SeCtiOn notes some areas in which it would be worth ex- 
tending the model and comments on each of those ex- 
tensions. 

6.1. Timing and Synchronization 
In addition to the problems of input interpretation and 

output rendering addressed by this model, an interactive 
system must deal with a number of timing and 
synchronization problems. 

Multiple input Sources: If a single user employs muj- 
tiple devices at once -- such as a keyboard, a mouse, a 
set of potentiometers, and special graphics devices -- to 
create a set of inputs, we view that collection as a single 
conceptual input stream. The details of how to imple- 
ment this will depend on the underlying operating system. 
In the prototype Descartes implementations, the system 
automatically merged mouse input into the standard input 
stream. A solution for graphic devices under Tenex 
added explicit multiplexing and timing information to 
preserve the conceptual unity of the stream [Sproull79]. 

Unscheduled User input to Application Processes: In 
systems that are not purely event-driven, it is desirable 
for the human user to be able to send signals to the ap- 
plication software while it is executing. At a minimum, 
this can be simply a “slop executing cleanly” Signal, 
though many elaborations are possible. The issue may 
even arise in an event-driven system if individual opera- 
tions are not fast enough. Again, the solution to this 
problem depends on the underlying System. If an inter- 
rupt facility is not available, the application may be forced 
to poll. If independent processes are supported, the 
character of the solution may depend on whether they 
can share address spaces. In any case, unprocessed in- 
put that is already pending at the time the user sends the 
signal must be dealt with appropriately (usually by dis- 
carding it). 

COnSiStenCy between Display and Program State: As 
discussed in Section 3.3, the creation of input by refer- 
ence to values on display depends critically on consis- 
tency between the display and the program state. Rapid 
redisplay reduces the severity of the problem, but careful 
synchronization of input containing cursor references with 
display updates is required for absolute correctness. A 
solution in the Tenex context is given by Sproull [Sproull 
791. 

6.2. Communication between Programs and 
Mass Storage 

Although this model was developed with human inter- 
action in mind, there are no obvious major obstacles to 
extending it to input and output between programs and 
mass storage. The extensions will generally involve the 
device-relative types used for conversion. Although the 
mechanisms for automatic redisplay of modified program 
variables will be useful for some applications, explicit out- 
Put requests wilt more often be the useful mode for Send- 
ing data to mass storage. 

file, 
Sequential File Access: For sequential access to a 
all that is required is a conversion to and from Some 

suitable (e.g., binary recorded) representation and 
input/Output Operations that update the file in addition to 
converting the values. Conversion to such a represen- 
tation is USUally easy for values that do not contain 
Pointers and hard for values that do. Input is somewhat 
Simpler than in the interactive case because it is not 
necessary to find the end of the input sequence for a 
given value. 

271 



CH 1’86 Proceedings April 1986 

Logging and Typescripts: It is often useful to create a 
transcript of a sequence of values. This might, for ex- 
ample, be a log of all values taken on by a single variable 
or a typescript similar to the sequence of lines produced 
on an interactive system using one-dimensional input and 
output. The former could be accomplished using the 
representations for sequential file access suggested 
above and the mechanisms for automatic output genera- 
tion used to update an interactive display. The automatic 
mechanism would be used in this case to send output to 
a file. Typescripts, on the other hand, are intrinsically 
periodic snapshots of collections of variables produced 
under program control. A simple typescript can be 
produced by converting the desired messages to strings 
and sending them explicitly to files. A typescript file 
produced as a byproduct of an interactive system that (by 
design) uses a typescript style of output in some window 
is a little trickier. One possibility is to convert each line 
and assign it to a string variable, then use the automatic- 
update mechanisms both to send the string to the 
typescript file and to update (and send) the display. 

Acknowledgements 

This model for input and output evolved over a num- 
ber of years, and I am grateful for the many hours that 
my colleagues spent discussing the problem with me. I 
am especially indebted to the members of the Descartes 
project at Carnegie-Mellon and to the DARPA Quality 
Software Working Group. Comments from CHI ‘86 
referees were very constructive and contributed to im- 
proved exposition. An earlier version of this paper was 
presented at the Dutch conference, NGI-SION 1985 In- 
formatica Symposium: uitdaging aan de informatica. 

The research presented here was supported by the 
National Science Foundation under Grant MCS-80-11409 
and by the Defense Advanced Research Projects Agency 
(DOD), ARPA Order No. 3597, monitored by the Air Force 
Avionics Laboratory under Contract F33615-78-C-1551. 
The views and conclusions contained in this document 
are those of the author and should not be interpreted as 
representing the official policies, either expressed or im- 
plied, of the Defense Advanced Research Projects 
Agency or the U.S. Government. 

The author is currently Chief Scientist of the Software 
Engineering Institute and Associate Professor of Com- 
puter Science at Carnegie-Mellon University. 

References 

Baecker 79. Ronald Baecker, William Buxton and Wil- 
liam Reeves. Towards Facilitating Graphical Inter- 
action: Some Examples from Computer-Aided 
Musical Composition. 6th Man-Computer Com- 
munications Conference, National Research 
Council of Canada and Canadian Man-Computer 
Communications Society, May 1979, pp. 197-207. 

Card 83. Stuart K. Card, Thomas P. Moran, and Allen 
Newell. The Psychology of Human-Computer 
Interaction. Lawrence Erlbaum Associates, 
Hillsdale, N.J., 1983. 

de Jong 80. S. Peter de Jong. The System for Business 
Automation (SBA): A Unified Application Develop- 
ment System. Information Processing 80, IFIP, 
October 1980, pp. 469-474. 

Embley 81. David W. Embley and George Nagy. 
“Behavioral Aspects of Text Editors.” ACM Com- 
puting Surveys 13, 1 (March 1981), 33-70. 

Green 81. Mark Green. “A Methodology for the 
Specification of Graphical User Interface.” ACM 
Computer Graphics (August 1981), 99-l 08. 

Guttag 80. John Guttag and J.J. Horning. Formal 
Specification As a Design Tool. Seventh Annual 
Symposium on Principles of Programming Lan- 
guage, ACM SIGPLAN/SIGACT, January 1980, 
pp. 251-261. 

Hayes 82. P.J. Hayes. Cooperative Command Inter- 
action Through the Cousin System. Proceedings 
of the International Conference on Man/Machine 
System, University of Manchester Institute of 
Science and Technology, London, July 1982. 

Hirsch 81. R.S, Hirsch. “Procedures of the Human Fac- 
tors Center at San Jose.” IBM Systems Journal 
20, 2 (1981). 

Kernighan 81. B.W. Kernighan. “PIG - A Language for 
Typesetting Graphics.” ACM SIGPLAN Notices 
76,6 (June 1981), 92-98. 

Liskov 77. Barbara Liskov, Alan Snyder, Russell Atkin- 
son and Craig Schaffert. “Abstraction 
Mechanisms in CLU.” Communications of the 
ACM 20,8 (August 1977). 

Mallgren 82. William R. Mallgren. “Formal Specification 
of Graphic Data Types.” ACM Transactions on 
Programming Languages and Systems 4, 4 
(October 1982). 687-710. 

Meyrowitz 82. Norman Meyrowitz and Andries van 
Dam. “Interactive Editing Systems, Parts I and II.” 
Computing Surveys 74, 3 (September 1982), 
321-415. 

Myers 80. Brad A. Myers. Displaying Data Structures 
for Interactive Debugging. Ph.D. Th., MIT, June 
1980. 

Reisner 81. Phyllis Reisner. “Formal Grammar and 
Human Factors Design of an Interactive Graphics 
System.” IEEE Transactions on Software En- 
gineering SE-7.2 (March 1981), 229-240. 

Rowe 83. L.A. Rowe and K.A. Shoens. “Programming 
Language Constructs for Screen Definition.” IEEE 
Trans. on Software Engineering SE-g. 1 (January 
1983), 31-39. 

Shaw 81. Mary Shaw (editor). Alphard: Form and 
Con!ent. Springer-Verlag, 1981. 

Shaw 83. Mary Shaw, Ellen Borison, Michael Horowitz, 
Tom Lane, David Nichols, and Randy Pausch. 
Descartes: A Programming-Language Approach 10 
Interactive Display Interfaces. Proc. SIGPLAN 
Symp on Programming Language. Issues in 
Software Systems, ACM, June 1983, Pp. 
100-111. 

272 



CH 1’86 Proceedings April 1986 

Sproull79. Robert F. Sproull. Raster Graphics for tnter- 
active Programming Environments, Tech. Rept. 
CSL-79-6, Xerox Palo Alto Research Center, 
June 1979. 

Teitelman 84. Warren Teitelman. “A Tour Through 
Cedar.” IEEE Software (April 1984). 

VanWyk 82. C.J. Van Wyk. “A High-level Language for 
Specifying Pictures.” ACM Transactions on 
Graphics 7, 2 (April 1982), 163-182. 

Wallis 80. Peter J.L. Wallis. “External Representations 
of Objects of User-Defined Type.” ACM Trans- 
actions on Programming Languages and Systems 
2,2 (April 1980) 137-l 52. 

273 


