
Visigoth: Visualizing the Gnutella Overlay
Topology

CIS 422/522 Project 1, Winter 2007

Michal Young

Revision 1.5, produced January 8, 2007

Abstract

The first of two projects for CIS422/522 in Winter term 2007 is visual-
ization support for Gnutella topology data. The project is due on Friday, 2
February at 5:00pm and so must be completed in approximately four weeks.

The data sets to be visualized were produced by a networking research
project at UO. Given the tight schedule, the only realistic approach is to
transform these into a form suitable for one or more existing data visualiza-
tion tools. Features of the software to be produced includes transforming the
format of the data sets, selecting portions of the data for display, selecting
attributes to display, and controlling the visualization.

Among the most important goals of the project are to make these features
flexible and extensible for exploratory data analysis. This places a very high
premium on the architectural design of the visualization support.

1

Contents
1 Introduction 3

2 Users and Tasks 3
2.1 User characteristics . 3
2.2 User tasks . 5

2.2.1 Scenario: Exploring connectivity 5
2.2.2 Scenario: Adding a Graph Analysis 6

3 Required and Desirable Features 7
3.1 Data Input . 8
3.2 Data output . 8
3.3 Data manipulation . 8

3.3.1 Selection and Filtering 8
3.3.2 Attribute computation 9

3.4 Performance and Capacity . 9
3.5 Robustness . 10

4 Architecture Notes 10
4.1 Existing Visualization Tools . 10
4.2 Input Processing . 11
4.3 Configurability and Extensibility 11

5 Deliverables 12
5.1 Source Distribution . 12
5.2 User Manual . 13
5.3 Developer Documentation . 13

2

1 Introduction
CIS 422/522, Software Methodology I, is a team project-oriented course. We
complete two projects in the first 9 weeks of a 10-week term. The first of the two
projects, as well as teams for that project, are chosen by the instructor. The second
of the two projects, as well as teams, are chosen by students themselves (although
I may intervene in some circumstances). The first project is given approximately
4 weeks, and the second project 5 weeks. (Week 10 is reserved for presentations
and recovery.)

The first of two projects for Winter term 2007 is data visualization support
for analysis of the Gnutella peer-to-peer network. The data to be visualized was
captured by the Mirage research group at University of Oregon. The purposes
to which visualization will be put are primarily exploratory, meaning that there
is no single “right” visualization, but rather a range of questions that network
researchers may seek insight into using visualization.

A product for which the primary users are researchers is a bit unusual for this
course, and I regard it as an experiment. A risk of such a project is somewhat
less clarity and stability in the definition of requirements for product features. On
the positive side, such a project puts extraordinary demands on the architectural
design, and somewhat less on the initial product feature set, which fits well with
my pedagogical objectives for this course.

At least two students at UO have previously worked on visualization of the
Gnutella data. Figures 1 and 2 illustrate this prior work.

Sections 2 and 3 comprise a preliminary requirements statement for Visigoth.

2 Users and Tasks

2.1 User characteristics
The primary users of the system for visualizing the Gnutella overlay topology
(henceforth Visigoth) are networking researchers studying characteristics of peer-
to-peer networks. The intial end users are members of the Mirage networking
research group at University of Oregon, but a successful system should be usable
by researchers elsewhere using data sets published by the Mirage group.

In addition to end users, Visigoth projects will be made available to partici-
pants in the peer-to-peer visualization seminar to be held in Spring 2007. Partici-
pants in this seminar are primarily graduate students with an interest in networking

3

Figure 1: Linda Sato’s Gnuviz, described at http://www.uoregon.edu/
∼lsato/gnuviz.html

Figure 2: This 200-node diagram from Jason Lam shows how difficult to read
even moderately complex graphs can be.

4

http://www.uoregon.edu/~lsato/gnuviz.html
http://www.uoregon.edu/~lsato/gnuviz.html

and/or data visualization. Seminar participants may use Visigoth to understand ca-
pabilities and limitations of existing visualization tools, to get ideas for the tools
they may construct, and to understand characteristics of the data sets and their
impact on visualization tools. In the best case, one or more of the visualization
systems produced by CIS 422/522 students will be suitable as a starting point for
projects constructed by seminar students.

Typical interactive use of Visigoth will be with conventional computer display
devices, with resolutions less than 2000 by 2000 pixels. However, the researchers
using Visigoth will have occasional need for output in other formats. One of
these is small but high resolution vector graphics in printed form, for inclusion in
technical research papers. Another is very large format display devices, such as
arrayed displays or arrayed projectors.

2.2 User tasks
These tasks are described in the form of scenarios. It is not required that interac-
tion with Visigoth follow exactly the steps described here. Rather, these scenarios
are intended to illustrate user needs, which the software system may meet in dif-
ferent ways.

2.2.1 Scenario: Exploring connectivity

The Gnutella overlay network classifies participating hosts as leaves, peers, and
ultrapeers.

A network researcher wishes to better understand the connection structure of
ultrapeers. Because the graph is very large, it is not possible to view the entire
topology at once. The researcher begins by configuring Visigoth to

• select a focus ultrapeer node at random.

• limit the display to 20 ultrapeer nodes, 50 total nodes, and 100 edges.

• condense leaf and peer nodes to connection counts (i.e., instead of showing
5 individual links to leaf nodes, display a single link to a single leaf node
labeled “5”).

• display ultrapeer nodes whose distance from the focus node is less than four.

• display IP address and port of each ultrapeer node.

5

On the first attempt, Visigoth displays 20 ultrapeer nodes, including 19 at dis-
tance 1 from a randomly selected focus node, and reports that 14 additional nodes
at distance 1 could not be displayed because they exceeded the limit on ultrapeer
nodes. Only a small portion of the resulting display fits on the display screen.

The researcher modifies the configuration parameters to select up to 40 ultra-
peer nodes but to display them as dots, except that the selected focus node is an
oval labeled with its IP number (but not port). The researcher re-executes Visigoth
and obtains a more useful graph display. Re-executing it several more times and
panning the graphical display in the window, she is almost always able to see at
least all the immediate neighboring ultrapeer nodes, and to notice that many of the
immediate neighbors are also neighbors of each other.

The researcher saves the configuration script and walks down the hall to the
distributed system visualization laboratory. The large stereoscopic display is not
currently in use, so she logs in and begins to use it. She loads her saved configu-
ration into Visigoth.

Finding that the high resolution, three-dimensional display can accomodate
many more nodes than her conventional computer screen, she increases the limit
on ultrapeer nodes to 50 and the limit on edges to 300. For the next 30 minutes
she executes the visualization script several times to see a variety of different
ultrapeers, spending a few minutes manipulating the display for each selection.

During the interactive exploration she saves three selections for later use in a
paper. These will be re-displayed using different display parameters for use in a
paper, but using exactly the same set of nodes and edges.

2.2.2 Scenario: Adding a Graph Analysis

A network researcher is interested in studying the characteristics of paths from
one node to another. Of particular interest is when some intermediate node lies on
all good paths between them — she speculates that nodes whose best communi-
cation paths are forced through these bottlenecks may have less reliable commu-
nication than nodes that have many choices among equally good communication
paths. This is close related to the notion of dominators from graph theory, which
is widely used in program analysis. She decides to define k-domination as fol-
lows: Node D k-dominates the pair (A, B) iff D lies on all paths from A to B
with length at most k.

The researcher wants to select pairs of nodes, find their distance d, (the length
of the shortest path between them), and then display all minimum length paths be-
tween them with d-dominators highlighted. However, since she has just defined k-

6

dominators, there is no current Visigoth feature for selecting k-dominating nodes
for a given path. She must create one.

Alternative sub-scenario A: The researcher begins with a sample component
for graph analyses. Choosing among samples written in Python, C++, and Java,
she chooses the Python version because she needs to quickly evaluate the con-
cept, and she does not anticipate performance problems. She makes a copy of
this component, keeping the interfaces for reading the intermediate graph format,
transforming it into an in-memory format, traversing and annotating it, and writing
back the intermediate graph format. She writes a page or so of Python code for the
new analysis, names her new component, and adds it to the Visigoth component
collection.

She begins by testing the component on a few small data sets, noting failures
(both crashes and incorrect results), and editing her component. When the com-
ponent seems to be working correctly, she begins to use it as intended on the real
Gnutella data. She also writes basic documentation so that other researchers can
use her new graph analysis component.

Alternative sub-scenario B: The researcher opens the Visigoth scripting man-
ual and looks for examples as similar as possible to her needs. After studying
these examples, she creates a k-dominator identification script and installs it in
her Visigoth script library.

She begins by testing the script on a few small data sets, noting failures (both
Visigoth error messages and incorrect results), and editing her script. When the
component seems to be working correctly, she begins to use it as intended on the
real Gnutella data. She also writes basic documentation and places her new script
and usage instructions in the shared library of Visigoth graph analysis scripts.

3 Required and Desirable Features
From the scenarios above, we can identify several required features and several
that, though not absolutely required, are very desirable. For brevity below, we use
the word “shall” to indicate something that is required, and “should” to indicate
something that is not required but is highly desirable.

Required and desirable features are numbered in a single sequence. These
numbers may change as requirements are added and rearranged. All references to

7

these requirements (in design documents, for example), should be by description,
not by number.

3.1 Data Input

• R1 Visigoth shall read data in the format provided by Gnutella crawler.

• R2 The original attributes of a node include IP number, port, client program, and
class (leaf, peer, ultrapeer, or failed).

3.2 Data output

• R3 Visigoth shall produce graphical visualizations of network topology.

• R4 Visigoth shall label nodes with host IP#, or not, at the user’s option.

• D5 Visigoth should label nodes with any original or computed attribute, at the
user’s option.

• D6 Visigoth should select different display attributes, including color, shape,
size, and labeling, depending on original or computed attributes.

• D7 Visigoth should be compatible with conventional computer displays, print-
ing, and very high resolution display devices.

3.3 Data manipulation
3.3.1 Selection and Filtering

Filtering means removing nodes or edges that do not meet a criterion from the
data set, and selection means designating a node or nodes for some particular role
(e.g., a focus node for a neighborhood display).

• R8 Visigoth shall apply user-specified filtering criteria to nodes, based on origi-
nal or computed attributes.

• R9 Visigoth shall apply user-specified capacity filters, e.g., limiting the number
of displayed nodes or displayed edges. Triggering of capacity filters (i.e., if other

8

filtering rules would result in displaying more than the user-specified number of
nodes or edges) shall be reported to the user.

• D10 Visigoth should allow filtering of nodes based on a wide range of user-
specified criteria.

• R11 Visigoth shall apply user-specified selection criteria, including at least the
ability to choose a focus node uniformly at random from the data set.

• D12 Visigoth should allow selection of nodes meeting a wide range of user-
specified criteria involving original and computed attributes.

3.3.2 Attribute computation

• D13 Visigoth should, at user option, compute a variety of new attributes of nodes
and edges from the original attributes.

• D14 Visigoth should support creation of new nodes and edges (e.g., condensing
leaf nodes as in the first scenario).

• D15 Visigoth should support ranking of nodes and edges based on user specified
criteria (e.g., the 20 closest neightbors to node N , or the 20 immediate neighbors
having maximum out-degree).

• D16 Visigoth should make available new, user-written attribute computations
through the same interface as the standard attribute computations provided by
Visigoth.

3.4 Performance and Capacity
The data sets describing Gnutella topology at different points in time are rather
large. Actually visualizing a whole data set is not practical, but Visigoth must at
least be capable of processing a whole data set and then displaying a small part of
it.

• R17 The wall time required for Visigoth to read and process an input file with at
most 500,000 nodes and 10,000,000 edges, selecting at most 100 nodes and 100
edges for display, shall be under 2 minutes on a typical desktop computer.

• D18 Nearly all simple visualizations should complete in under 10 seconds.

9

3.5 Robustness
These criteria are listed in order of increasing robustness. A production-quality
system should achieve all four.

• R19 Visigoth shall not crash or hang when executing any script or configuration
that conforms to documented usage rules.

• D20 Except for internal errors in user-written components, Visigoth should not
crash or hang regardless of errors in user instructions (e.g., scripts and configura-
tion parameters).

• D21 Visigoth should catch and report even failures that occur within user-written
components and extensions to Visigoth.

• D22 Visigoth should provide debugging support to aid in detecting and diagnos-
ing errors in user-written scripts and configurations.

4 Architecture Notes
Considering the second scenario above, in which a user creates a new analysis
to incorporate into Visigoth, it should be clear that an architecture designed for
extensibility is particularly crucial, and is probably the most challenging aspect
of this project. A requirements document does not normally prescribe the design
of a software system, but may impose a number of requirements that make some
designs more suitable than others.

My notes here on the architecture of Visigoth do not limit the approaches you
can take, provided your approach is better than what I describe in at least one
respect and not horribly worse in others. You should carefully reason about your
design choices, and explain them, whether you follow my suggestions or not.

4.1 Existing Visualization Tools
You should almost certainly use an existing graph visualization tool for display.
Tools you might consider include

Graphviz http://www.graphviz.org
H3Viewer http://graphics.stanford.edu/papers/h3/
Otter (2D) http://www.caida.org/tools/visualization/otter/
Walrus (3D) http://www.caida.org/tools/visualization/walrus/
Tulip http://www.tulip-software.org/

10

http://www.graphviz.org
http://graphics.stanford.edu/papers/h3/
http://www.caida.org/tools/visualization/otter/
http://www.caida.org/tools/visualization/walrus/
http://www.tulip-software.org/

Ideally you would have interfaces to multiple display tools. For example,
you might give the user a choice between displaying with graphviz, davinci, or
another tool. This would be particularly important for moving between a conven-
tional computer display and other display technologies, such as the high resolution
stereoptic 3D display in the distributed systems visualization lab. Note that this
implies that neither the input formats nor the capabilities of any particular display
tool is wired deeply into the guts of Visigoth. Transforming the internal form into
the form required by a particular visualization tool should be a well-encapsulated
module.

4.2 Input Processing
For the present, the input format of the Gnutella trace log files is the only input
format you are required to accept. Ideally, though, that should also not be too
deeply wired into your system. It would be better if there is a well-defined graph-
reading interface into which other readers can be inserted.

4.3 Configurability and Extensibility
There are at least two ways to achieve the flexibility and extensibility described
above. One is to structure your system as an interpreter. One module reads an
input file, another emits output in the right format for an existing visualization
engine (such as the graphviz tools), and in between you manipulate an in-memory
data structure by interpreting a scripting language. The operations in your script-
ing language are small modules with a well-defined interface to the shared graph
data structure, and it is easy to construct and incorporate additional operators. Al-
though building an interpreter can be a pretty major undertaking, you can keep it
simple by using a very simple syntax (e.g., postfix) or by embedding an existing
interpreter.

The second way (which I recommend) breaks the system down into a num-
ber of small programs that communicate through intermediate files. There is no
shared in-memory representation of the graph, but there should be a single, fixed
intermediate representation of the graph that passes from program to program.
It is still necessary to interpret some kind of configuration specification to chain
these steps together.

If you choose the first approach — interpreting scripts to manipulate a single
in-memory representation — then you should probably write the whole program
in one language, and that language should probably be something like Java or C++

11

(though Python might do). If you choose the second approach, you’ll probably
want to write at least the first draft of most components in a scripting language
like Awk, Perl, or Python.

The second approach will definitely be slower to execute than the first, because
file I/O is slow compared to computation. However, it will be easier to debug,
provided you design a human-readable intermediate data format or build tools to
inspect the intermediate form. It is more difficult to assign blame to one among
many modules manipulating the same data structure in memory, no matter how
righteously modular and object-oriented your data structure code is.

5 Deliverables

5.1 Source Distribution
The source distribution is a single archive (.tgz or .zip file) containing all parts of
the system in source form. The archive should expand into a single directory. It
should contain

• Source code of all programs, except external components that must be ob-
tained and installed separately. This includes source that does not become
part of the end-user programs, such as Makefiles, debugging scripts, config-
uration scripts, etc.

• All user and developer documentation in its source form. If the source form
is not an open format editable with free and widely available tools, then
open format derived versions of documents must also be provided. For
example, if you use MS Word to create a user manual, then in addition to
the .doc file (which is not in an open format) you should include a PDF,
HTML, or plain text version of each file.

See below for more on required developer documentation.

• Test suites and scaffolding, with test documentation. Unit, subsystem, and
system tests should be as automated as possible, and should be portable
(i.e., they need to run for developers who install your system in their own
environment).

• Project web site (optional but recommended).

12

5.2 User Manual
A manual for end users is required. It may be divided into a tutorial and a reference
manual. A single combined user manual (tutorial and reference together) is also
possible, provided it is usable in both ways.

A tutorial is task-oriented and proceeds from the simplest, most common tasks
up through more complex and less common tasks. Each task is described step-by-
step, with examples. A tutorial often omits some options for the sake of simplicity.
Tutorials are usually read sequentially, starting from the beginning, although a
user may skip over sections that appear to be irrelevant to his or current task.

A reference manual describes each feature and option of the system clearly
and precisely, with examples. It is arranged or indexed to accomodate random
access, and is seldom read sequentially.

Both tutorials and reference manuals should include a short introductory sec-
tion describing the purpose of the described system and any assumed background
knowledge of users.

If the system is designed for installation by end users, there should also be a
separate installation manual, or else installation instructions can be the first part
the tutorial. (See under developer documentation below for more on installation
instructions.)

Often a system has more than one set of users. For example, an email system
might have end users and system adminstrator users. Usually each user audience
will need its own set of documentation.

5.3 Developer Documentation
Developer documentation should include, at a minimum:

README.txt: This plain text file should appear at the top level of the project
directory (i.e., in the top level directory expanded from the project archive
file). It should contain, at a minimum:

• The name of the system

• A brief description of the purpose of the system. Who should use it,
and for what? This should be very brief, but enough to identify the
system to a user.

• Version and date.

13

• Environment requirements (briefly, but enough so, for example, a Win-
dows user doesn’t waste a lot of time trying to install and use a Unix
program.)

• A list of the authors (developers), with contact information for at least
one.

• A guide to other developer documentation. For example, it might say
that the user manual is found in the “manual” subdirectory and all
other developer documentation is found in the “doc” directory.

Other information that typically appears in a README file includes li-
cense terms (please use an open source license, such as BSD, Apache, or
GPL) and acknowledgment of sources (especially, but not only, if the cur-
rent project is a modification or extension of another open source system.)

Requirements description: A clear description of the problem addressed by the
software. (Sections 2 and 3 are a preliminary requirements statement and
can serve as the first draft of your requirements statement.)

System requirements specification: Describes precisely what the system will
do. If the user reference manual is sufficiently detailed, it may serve as
part of the system specification. (In that case, the specification document
would include the user manual by reference.) The requirements specifica-
tion should also indicate what part of the requirements are met, what has
been deferred to the future, and (as appropriate) what part of the perceived
user requirements are omitted, with a rationale for those choices.

Note the distinction between a requirements description and a requirements
specification: The former describes what is needed, and the latter describes
what is to be constructed. A “requirements statement” may include both in
one document, but both purposes are important and should not be confused.

System architectural design: Describes the overall organization of the system,
including criteria for breaking it into subsystems and modules, as well as
the resulting breakdown.

Detailed design: Much of the detailed design of an implementation is typically
provided within the code itself, in comments, and is often processed into
more usable form with a tool like javadoc.

14

How can you know that the architectural design and detailed design doc-
umentation are sufficient? The key is that together they must be adequate
for a programmer otherwise unfamiliar with the system to plan and execute
a modification. The architectural design document should be enough to
determine whether a given modification is likely to be possible and approx-
imately how difficult it will be, and which source files are likely to require
changes. (A good architectural design minimizes the number of parts of a
system that must be changed to make the most common changes.) The de-
tailed documentation should confirm the practicality of the change and be
enough (together with the architectural design) to plan and execute it. In
short, the maintainer should be able to figure out where to look, and then
find the information he needs there.

Anticipated changes: This may be a section in the requirements specification
(anticipated changes in user needs) or, in the system specification (antic-
ipated changes in system features), and in the architectural design (how
anticipated changes will fit in the design). For example, if we anticipated
a need to use the system in Senegal, we might anticipate adding an option
to give all error messages in French, and we might note in the architectural
design that all messages are routed through the Messages module, which
produces message text from an external text file that can be replaced at sys-
tem compile time with a file containing the same messages in a different
language.

Build instructions: How to create a running system from the source files. Note
that building is not the same as installing, so these are different instructions.
Good build automation can make the build instructions very simple, perhaps
simple enough to include in the README file.

Test documentation: Describe the overall test plan and provide instructions for
unit and system regression testing after changes.

Manifest: A guide to all the files in the distribution. A first level manifest may be
placed in the README file if it is not too large; otherwise it should appear
in a separate document.

15

Acknowledgments. The idea for this project, and information on available graph
drawing utilities, was provided by Prof. Virginia Lo. The Gnutella data was col-
lected by Dr. Daniel Stutzbach in the Mirage networking lab under the direction
of Prof. Reza Rejaie.

16

	Introduction
	Users and Tasks
	User characteristics
	User tasks
	Scenario: Exploring connectivity
	Scenario: Adding a Graph Analysis

	Required and Desirable Features
	Data Input
	Data output
	Data manipulation
	Selection and Filtering
	Attribute computation

	Performance and Capacity
	Robustness

	Architecture Notes
	Existing Visualization Tools
	Input Processing
	Configurability and Extensibility

	Deliverables
	Source Distribution
	User Manual
	Developer Documentation

