
Koala

A case study in component-oriented,
product line software architecture

“The Koala Component Model,” van Ommering et
al, IEEE Computer 2000

“Building Product Populations,” van Ommering,
ICSE 2002

Why read these papers?

• General issues: software reuse, software
architectural design, components

• Particular approaches: architecture
design language, automation of
integration and parameterization

• A peek at the research side of software
engineering

CE Problem & Opportunity

• Challenge:

– Rapid development (market pressure)

– Changing hardware environment

– Cost constraint

• Opportunity:

– Commonality across products

– Reusable components
• not quite the same thing: application domain vs.

technical infrastructure

Exploiting Commonality

• General theme: Find what is the same,
factor it out, reuse it

– Includes design and methods as well as
code (e.g., design patterns)

• Reusable pieces (code) require
parameterization

– A fixed part with variable parameters

– Key question: What can we parameterize?

Framework vs. Components Framework vs Component

• Framework: common structure,
parameterize by “filling in”
– Easy to fill in; hard to evolve structure

• Components: encapsulated, documented
interfaces
– “downward” as well as “upward” interfaces;

note similarity to framework “hooks” or
“slots”

– Less given than frameworks, but easier to
evolve

Provides & Requires

• Provides: upward interface

– You’re used to this: class & method
signatures, etc. ; extend naturally to larger
constructs

• Requires: downward interface

– Contrast to explicit naming in Java, C++, etc

– You can simulate (clumsily) with interfaces
and abstract classes

Binding Time

• In programming languages:
– Run time (dynamic), compile time (static)

– e.g., “static type” does not change during
execution, “dynamic dispatch” is call
through object reference

• In software engineering
– Same concept, extend to various points in

design

– Same trade-offs: flexibility vs. performance,
dependability

Binding in Koala

• Separate “wiring” from components

– Explicit “downward” interfaces

– Defer binding of calls

• Configuration-time binding

– More flexible than component design time
• as in conventional programming language

constructs

– Cheaper than run-time binding
• as in COM, Corba, et al

