Computing with DNA

Can we really make a computer out of DNA?
e What is DNA?
e How to “compute” with DNA
® The traveling salesman: an important problem that could use some help
® Prospects for future DNA computers

Ghromosorme

DNA Carries e
Genetic Information

Cantramens

e DNA is found in the nucleus
of a cell -

e \ery compact
= in human cells over 8 billion

“rungs” on this ladder fit
into the nucleus

@ In the terminology of
information theory, each
rung carries two “bits” of
information
® much more information

per mm3 than electronic
memory chips

Close-up View

@ This picture shows a DNA
double helix in more detail

= the four building blocks are
known as “bases”

m names abbreviated A, T, C, and G

Mitrogenous:
= the chemical structure of the bases e
allows A to connect to T and C to

connect to G

AsT
Ce G

Replication

e When cells divide, the DNA is copied
m each “daughter cell” has an
exact copy of the information
from the parent cell
= the helix unwinds, and new
strands form opposite the
bases of the original strands

e When a strand of DNA connects
to a complementary strand it is
through a process known as
“hybridization”

AsT
Ce G

Gene Expression

@ The process of translating
genes into proteins is
known as “gene expression”
= a messenger RNA (mRNA)
molecule has a copy of
the information

= the mRNA migrates outside
the nucleus

mANA Transcription :
\,B:‘ \ ﬂnﬁﬂ-‘ﬁw
Mature MANA

INANANN

Transport to cytopiasm for
proten Eyninesis (ransiation]

= aribosome translates the
information, produces a
protein

protein
(chain of amino acids)

Genes are Small Sections of DNA

e Very little of the DNA in human
cells carries protein-coding
information
= 1% of the DNA has the

“blueprints” used
by the cell to make
proteins
m some of the rest (intergenic DNA)
may has information used
by other cellular processes

= for the remainder -- ??

Can We Build a Computer from DNA?

e What is a “computer”?
= something that stores data/information
= something that is able to process information to produce new information

@ Modern electronic computers store and process information represented as
binary numbers

5+3=8

11
101
+ 011

any
HOX ((

1000

carry A+B

Bits Can Also Represent Text

e The ASCII code uses 8 bits to represent one letter
= E =01000101
= u=01100101
= g=01100111
m e =01100101
= requires 6 x 8 = 48 bits to represent “Eugene”

e ASCII is limited to the Western (Roman) alphabet
m 26 letters, 10 digits, some punctuation

s UNICODE uses 16 bits per symbol, includes many European and Asian alphabets,
special symbols, and more

BB, 30,648 5, ..

DNA Can Encode Numbers and Text

@ There are four bases (A, T, C, G)

e Each could represent two bits, e.g. A=00,T=01,C=10,G =11
= E=01000101 = TATT
s u=01100101 = TCTT
8 g=01100111 =TCTG
m ¢=01100101 =TCTT

e Store the word “Eugene” in 6 x 4 = 24 bases

A Computation Using DNA

@ So we know how to represent information with DNA
e Can we process information?

= Is it possible to implement an algorithm that uses strands of DNA as input and
produces new DNA representing the output?

@ In 1994 computer scientist Leonard Adleman at USC used DNA to solve a
problem known as the Hamiltonian Cycle problem

= Adleman, L. “Molecular computation of solutions to combinatorial problems.”
Science, vol 266, pp 1021-1024, 1994,

Aside: Hamiltonian Cycles

e A Hamiltonian cycle is a path that connects all the nodes in a figure
m visit each node exactly once
= return to the starting point
e Not too hard to solve if
= figure has a regular geometry, and
= small number of nodes
e Very difficult in the general case
e A figure with n points can have
up to n! paths
m 5!=120
= 10! = 3,628,800
= 15! =1,307,674,368,000
= 20! =2.43x 108

Figure with 20 nodes

A Similar Problem: The Traveling Salesman

e The traveling salesman problem (TSP) is very closely related to the
Hamiltonian cycle problem

m suppose we have a list of n cities

m the goal is to define a tour that visits all n cities and returns to the starting place
m visit each city only one time

@ Here the goal is to find /5\%{@% W2 SR [
a minimal cost tour [/Af:”j Qiém“ Y ?zf;ﬁ g?%%&g{f
= at right: a tour of o . ?w é@fm@@w J
13,500 US oities %W ;g@ﬁ HV%% e

e

’&%’ i
Images and examples from the %:%M%%%@% 2

Traveling Salesman Page J\&}% J ﬂ%?ymg“
at Georgia Tech: f; “g;\g\i;@i{ 2

http://www.tsp.gatech.edu/

Traveling Salesman (cont’d)

e Cost can be defined as driving time, distance, air fare, ...
= assume the cost of going from X to Y is the same as going from Y to X

e Although it sounds simple this is a very hard problem to solve

m some simplifications and transformations can
reduce the number of steps to “only” 2"

m each time a city is added to the list
the time to find a tour doubles

= for a tour of 20 cities the program
might have to check 1 billion
combinations

e Some figures from TSPlib++
(an “industrial strength”) solver:
m 5.5 hours for 10,000 cities
= estimate over 6,000 years for 25,000 cities

Do We Really Need to Solve This Problem?

e The idea that anyone would really plan a road trip to 13,000 cities is a bit silly

e But the TSP is identical to several important “real world” problems:

= transportation: school bus routes,
service calls, delivering meals, ...

= manufacturing: an industrial robot
that drills holes in printed circuit
boards used in computers, video
and stereo, almost anything
electronic

® communication: planning new
telecommunication networks

= biology: genetic markers on
chromosomes / reassembly

TSP with DNA

e How did Adleman solve this sort of problem with DNA?

e Step 1: use DNA to represent names of cities A= 00
m Eugene = TATTTCTTTCTGTCTTTCGCTCTT T=01
s Corvallis = TATGTCTTTGACTGTCTCACTCGA... C=10
= make many copies of strands of DNA for each city S

e Step 2: make “roads” by making new strands
= road DNA is the complement of city DNA

= aroad connecting A to B has the second half of A and the first half of B

last half of “Eugene” first half of “Corvallis”
<. .TCTTTCGCTCTT TATGTCTTTGAC. ..
RRRARARERN (ARRRRARARERE
AGAAAGCGAGAA ... ATACAGAAACTG

“road” matching last part of Eugene and first part of Corvallis

TSP with DNA (cont’d)

e After making the city and road DNA (and lots of copies of each) mix them all
together

= a tour will consist of a long chain of cities connected by roads
= you will get lots of tours -- most of them wrong

= may be too short -- come back to the starting point too soon
= may be too long or include the same city more than once

e After all the DNA is hybridized filter out the incorrect tours and you’ll be left
with long strands that represent the correct solution(s)

e Adleman was able to find a Hamiltonian cycle in a 7-node graph

The Good News

e Adleman’s paper caused a lot of excitement and raised expectations

e DNA is very compact, and it was relatively easy to make a beaker full of DNA
with lots of copies of the “roads” and “cities”

e DNA hybridizes very quickly

e Biggest advantage: all tours are considered in parallel

@ Because there were so many copies of the roads and cities, Adleman’s DNA
computer did the equivalent of 10" calculations per second
= aka “100 teraflops”
m the fastest supercomputer in 1994 could do 35 teraflops
m the fastest supercomputer in the last “Top 500" list (Nov 2006) does 280 teraflops
= these supercomputers are very big -- the DNA computer sat on a lab bench

The Bad News

e Adleman’s method is not “scalable” -- like an electronic computer, a DNA
computer will have a hard time with a 200-node graph

@ By one estimate, to find a tour of 200 cities would require an amount of DNA
that would weigh more than the Earth

= the problem: we need enough copies of the city and road DNA to allow all
combinations to form

e This is a classic tradeoff in computer science --
= a solution always balances time vs space

= it is often possible to find a fast algorithm if one is allowed to use an infinite amount
of space

e Bottom line: the difficulty in TSP is mathematical complexity
= silicon and DNA are two ways of solving the math problem
m DNA is not capable of changing the mathematical properties of the problem

More Bad News

e Turning the promise of DNA computing into a reliable and useful technology
has proven to be very difficult

@ Some of the issues:
= errors in creating the DNA strands
m errors in hybridization (i.e. mismatches)

» these sorts of errors occur all the time in nature -- they are examples of genetic mutations

» natural systems have many ways of dealing with these errors, but how can we detect them
and deal with them in a DNA computer?

= it takes a long time to set up the calculation and another long time to interpret the
results
» the actual “computing” goes very quickly
» 1/O is another matter altogether

e Bottom line: DNA computers are not likely to be used for general purpose
computing any time soon

To End on a Positive Note...

@ There are special-purpose
calculations that can be

carried out by “gene chips” Light
. . {deprotection)

b Companlles like EmEEm wa e s Mask mmm T-m EmEEm
Affymetrix and others 5566 500000 OHOHOOO » TT000
manufacture chips 56545 54554 404644
with strands of DNA Watar
attached to a wafer v

GaTCG
25-mer CﬁTAT - _ = =
AGGTG Ty . Ty
TTCCG <4 TTCCO TTOHOHO< TTOOO
Repeat 559994 5656656 555455

GeneChip®
Microarray

Gene Chip

e The result of the manufacturing process is a “chip” with thousands of strands
of specifically engineered DNA

@ cDNA (copied from mRNA in a cell) can be “washed over” the chip

==
a

' %
Millions of features possible - 5
on each GeneChip® array w { f

- ur i@

nE

DNA probes in one corner
of an Affymetrix array

Analyzing the Data

@ When the experiment is done, matching cDNA has stuck to the chip

@ By looking at which chip cells have cDNA attached one can get an idea of
what the cell is doing -- i.e. which genes are active

stages and conditions of yeast cells

A

EL cocts [JISRON w18l ¢ ox

yeast genome
(2400 genes
with known

> function)

Finding Genes Active in Cancerous Cells

cancer cells

=
Hahiibiiii

L) LA A U G B T

£5
B

2
PE
&2
&

FEHTL ZCHI
WS SF268
BEHTL 111
TRELST 07549
AR SETYE

R BRERST NOPTRDRr
BSCLC HCIM226

i
)

g

sauab

Recap

e DNA is a “polymer” -- long strand made up from smaller building blocks
e A strand of DNA can attach itself to a matching strand of DNA
m a process called hybridization
e It is possible to build artificial strands of DNA using any sequence we want
e These strands can represent numbers, names of cities, ...

@ There has been some success in implementing algorithms through
hybridization (e.g. connecting two cities by binding complementary DNA)

@ DNA computing is far from “ready for prime time” for use in general purpose
computing

Questions

@ Using the simple code introduced here (A=00, T=01,C=10,G=11)and a
table of ASCII codes (search for “ASCII” on Wikipedia) show how your name
would be stored on a gene chip

e Consider the graph at right, with 5 nodes
and a connection between each pair of
nodes. Are there really 5! = 120 different
Hamiltonian cycles in this graph? Do you
think a graph with 6 nodes will have
6! = 720 paths?

e Did Adleman’s DNA computer solve the
Traveling Salesman Problem or the
Hamiltonian Cycle Problem?

= hint: what’s the difference between the two problems?

