
Computing with DNA

Can we really make a computer out of DNA?

• What is DNA?

• How to “compute” with DNA

• The traveling salesman: an important problem that could use some help

• Prospects for future DNA computers

DNA Carries

Genetic Information

DNA is found in the nucleus
of a cell

Very compact

in human cells over 8 billion
“rungs” on this ladder fit
into the nucleus

In the terminology of
information theory, each
rung carries two “bits” of
information

much more information
per mm3 than electronic
memory chips

2

Close-up View

This picture shows a DNA
double helix in more detail

the four building blocks are
known as “bases”

names abbreviated A, T, C, and G

the chemical structure of the bases
allows A to connect to T and C to
connect to G

3

A ⇔ T
C ⇔ G

Replication

When cells divide, the DNA is copied

each “daughter cell” has an
exact copy of the information
from the parent cell

the helix unwinds, and new
strands form opposite the
bases of the original strands

When a strand of DNA connects
to a complementary strand it is
through a process known as
“hybridization”

4

A ⇔ T
C ⇔ G

Gene Expression

The process of translating
genes into proteins is
known as “gene expression”

a messenger RNA (mRNA)
molecule has a copy of
the information

the mRNA migrates outside
the nucleus

a ribosome translates the
information, produces a
protein

5

protein
(chain of amino acids)

Genes are Small Sections of DNA

Very little of the DNA in human
cells carries protein-coding
information

1% of the DNA has the
“blueprints” used
by the cell to make
proteins

some of the rest (intergenic DNA)
may has information used
by other cellular processes

for the remainder -- ??

6

Can We Build a Computer from DNA?

What is a “computer”?

something that stores data/information

something that is able to process information to produce new information

Modern electronic computers store and process information represented as
binary numbers

7

5 + 3 = 8

1 0 1

+ 0 1 1

1 0 0 0

11

X
O
R

A
N
D

A B

carry A+B

Bits Can Also Represent Text

The ASCII code uses 8 bits to represent one letter

E = 01000101

u = 01100101

g = 01100111

e = 01100101

requires 6 x 8 = 48 bits to represent “Eugene”

ASCII is limited to the Western (Roman) alphabet

26 letters, 10 digits, some punctuation

UNICODE uses 16 bits per symbol, includes many European and Asian alphabets,
special symbols, and more

!, ", ∃, !, é, å, あ, ...

8

DNA Can Encode Numbers and Text

There are four bases (A, T, C, G)

Each could represent two bits, e.g. A = 00, T = 01, C = 10, G = 11

E = 01000101 = TATT

u = 01100101 = TCTT

g = 01100111 = TCTG

e = 01100101 = TCTT

Store the word “Eugene” in 6 x 4 = 24 bases

9

A Computation Using DNA

So we know how to represent information with DNA

Can we process information?

Is it possible to implement an algorithm that uses strands of DNA as input and
produces new DNA representing the output?

In 1994 computer scientist Leonard Adleman at USC used DNA to solve a
problem known as the Hamiltonian Cycle problem

Adleman, L. “Molecular computation of solutions to combinatorial problems.”
Science, vol 266, pp 1021-1024, 1994.

10

Aside: Hamiltonian Cycles

A Hamiltonian cycle is a path that connects all the nodes in a figure

visit each node exactly once

return to the starting point

Not too hard to solve if

figure has a regular geometry, and

small number of nodes

Very difficult in the general case

A figure with n points can have

up to n! paths

5! = 120

10! = 3,628,800

15! = 1,307,674,368,000

20! = 2.43 x 1018

11

Figure with 20 nodes

startfinish startfinish

A Similar Problem: The Traveling Salesman

The traveling salesman problem (TSP) is very closely related to the
Hamiltonian cycle problem

suppose we have a list of n cities

the goal is to define a tour that visits all n cities and returns to the starting place

visit each city only one time

Here the goal is to find
a minimal cost tour

at right: a tour of
13,500 US cities

12

http://www.tsp.gatech.edu/

Images and examples from the
Traveling Salesman Page
at Georgia Tech:

Traveling Salesman (cont’d)

Cost can be defined as driving time, distance, air fare, ...

assume the cost of going from X to Y is the same as going from Y to X

Although it sounds simple this is a very hard problem to solve

some simplifications and transformations can
reduce the number of steps to “only” 2n

each time a city is added to the list
the time to find a tour doubles

for a tour of 20 cities the program
might have to check 1 billion
combinations

Some figures from TSPlib++
(an “industrial strength”) solver:

5.5 hours for 10,000 cities

estimate over 6,000 years for 25,000 cities

13

Do We Really Need to Solve This Problem?

The idea that anyone would really plan a road trip to 13,000 cities is a bit silly

But the TSP is identical to several important “real world” problems:

transportation: school bus routes,
service calls, delivering meals, ...

manufacturing: an industrial robot
that drills holes in printed circuit
boards used in computers, video
and stereo, almost anything
electronic

communication: planning new
telecommunication networks

biology: genetic markers on
chromosomes / reassembly

14

TSP with DNA

How did Adleman solve this sort of problem with DNA?

Step 1: use DNA to represent names of cities

Eugene = TATTTCTTTCTGTCTTTCGCTCTT

Corvallis = TATGTCTTTGACTGTCTCACTCGA...

make many copies of strands of DNA for each city

Step 2: make “roads” by making new strands

road DNA is the complement of city DNA

a road connecting A to B has the second half of A and the first half of B

15

A = 00
T = 01
C = 10
G = 11

...TCTTTCGCTCTT TATGTCTTTGAC...

AGAAAGCGAGAA ... ATACAGAAACTG
|||||||||||| ||||||||||||

last half of “Eugene” first half of “Corvallis”

“road” matching last part of Eugene and first part of Corvallis

TSP with DNA (cont’d)

After making the city and road DNA (and lots of copies of each) mix them all
together

a tour will consist of a long chain of cities connected by roads

you will get lots of tours -- most of them wrong

may be too short -- come back to the starting point too soon

may be too long or include the same city more than once

After all the DNA is hybridized filter out the incorrect tours and you’ll be left
with long strands that represent the correct solution(s)

Adleman was able to find a Hamiltonian cycle in a 7-node graph

16

The Good News

Adleman’s paper caused a lot of excitement and raised expectations

DNA is very compact, and it was relatively easy to make a beaker full of DNA
with lots of copies of the “roads” and “cities”

DNA hybridizes very quickly

Biggest advantage: all tours are considered in parallel

Because there were so many copies of the roads and cities, Adleman’s DNA
computer did the equivalent of 1014 calculations per second

aka “100 teraflops”

the fastest supercomputer in 1994 could do 35 teraflops

the fastest supercomputer in the last “Top 500” list (Nov 2006) does 280 teraflops

these supercomputers are very big -- the DNA computer sat on a lab bench

17

The Bad News

Adleman’s method is not “scalable” -- like an electronic computer, a DNA
computer will have a hard time with a 200-node graph

By one estimate, to find a tour of 200 cities would require an amount of DNA
that would weigh more than the Earth

the problem: we need enough copies of the city and road DNA to allow all
combinations to form

This is a classic tradeoff in computer science --

a solution always balances time vs space

it is often possible to find a fast algorithm if one is allowed to use an infinite amount
of space

Bottom line: the difficulty in TSP is mathematical complexity

silicon and DNA are two ways of solving the math problem

DNA is not capable of changing the mathematical properties of the problem

18

More Bad News

Turning the promise of DNA computing into a reliable and useful technology
has proven to be very difficult

Some of the issues:

errors in creating the DNA strands

errors in hybridization (i.e. mismatches)

these sorts of errors occur all the time in nature -- they are examples of genetic mutations

natural systems have many ways of dealing with these errors, but how can we detect them
and deal with them in a DNA computer?

it takes a long time to set up the calculation and another long time to interpret the
results

the actual “computing” goes very quickly

I/O is another matter altogether

Bottom line: DNA computers are not likely to be used for general purpose
computing any time soon

19

To End on a Positive Note...

There are special-purpose
calculations that can be
carried out by “gene chips”

Companies like
Affymetrix and others
manufacture chips
with strands of DNA
attached to a wafer

20

Gene Chip

The result of the manufacturing process is a “chip” with thousands of strands
of specifically engineered DNA

cDNA (copied from mRNA in a cell) can be “washed over” the chip

21

Analyzing the Data

When the experiment is done, matching cDNA has stuck to the chip

By looking at which chip cells have cDNA attached one can get an idea of
what the cell is doing -- i.e. which genes are active

22

stages and conditions of yeast cells

yeast genome
(2400 genes
with known
function)

Finding Genes Active in Cancerous Cells

23

g
e
n
e
s

cancer cells

Recap

DNA is a “polymer” -- long strand made up from smaller building blocks

A strand of DNA can attach itself to a matching strand of DNA

a process called hybridization

It is possible to build artificial strands of DNA using any sequence we want

These strands can represent numbers, names of cities, ...

There has been some success in implementing algorithms through
hybridization (e.g. connecting two cities by binding complementary DNA)

DNA computing is far from “ready for prime time” for use in general purpose
computing

24

Questions

Using the simple code introduced here (A = 00, T = 01, C = 10, G = 11) and a
table of ASCII codes (search for “ASCII” on Wikipedia) show how your name
would be stored on a gene chip

Consider the graph at right, with 5 nodes
and a connection between each pair of
nodes. Are there really 5! = 120 different
Hamiltonian cycles in this graph? Do you
think a graph with 6 nodes will have
6! = 720 paths?

Did Adleman’s DNA computer solve the
Traveling Salesman Problem or the
Hamiltonian Cycle Problem?

hint: what’s the difference between the two problems?

25

