
Semantic Search

R. Guha
IBM Research, Almaden

rguha@us.ibm.com

Rob McCool
Knowledge Systems Lab,

Stanford
Stanford, CA, USA

robm@ksl.stanford.edu

Eric Miller
W3C/MIT

Cambridge, MA, USA

em@w3.org

ABSTRACT
Activities such as Web Services and the Semantic Web are working
to create a web of distributed machine understandable data. In this
paper we present an application called Semantic Search which is
built on these supporting technologies and is designed to improve
traditional web searching. We provide an overview of TAP, the ap-
plication framework upon which the Semantic Search is built. We
describe two implemented Semantic Search systems which, based
on the denotation of the search query, augment traditional search
results with relevant data aggregated from distributed sources. We
also discuss some general issues related to searching and the Se-
mantic Web and outline how an understanding of the semantics of
the search terms can be used to provide better results.

Categories and Subject Descriptors
H.3.3 Information Search and Retrieval

General Terms
Experimentation

Keywords
Semantic Search, Semantic Web

1. THE SEMANTIC WEB
The Semantic Web is an extension of the current Web in which
information is given well-defined meaning, better enabling com-
puters and people to work in cooperation. It is the idea of having
data on the Web defined and linked in a way that it can be used for
more effective discovery, automation, integration, and reuse across
various applications. In particular, the Semantic Web will contain
resources corresponding not just to media objects (such as Web
pages, images, audio clips, etc.) as the current Web does, but also
to objects such as people, places, organizations and events. Further,
the Semantic Web will contain not just a single kind of relation (the
hyperlink) between resources, but many different kinds of relations
between the different types of resources mentioned above.

The general ideas presented in this paper assume that the Semantic
Web will contain resources with relations amoung each other. More
concretely, we assume that the data on the Semantic Web is mod-
eled as a directed labeled graph, wherein each node corresponds
to a resource and each arc is labeled with a property type (also a
resource). While there are several different XML based proposals

Copyright is held by the authors.
WWW2003, May 20-24, 2003, Budapest, Hungary.
ACM 1.58113-680-3/03/0005.

for representing resources and their inter-relations on the Semantic
Web, a particular system needs to make a commitment to one or
more interchange formats and protocols in order to exchange this
information. The system described in this paper uses the W3C’s
Resource Description Framework with the schema vocabulary pro-
vided by RDFS [8] as a means for describing resources and their
inter-relations. SOAP [7] is used as the protocol for querying and
exchanging this RDF instance data between machines.

Figures 1 and 2 show two small chunks of the Semantic Web, the
first corresponding to the cellist Yo-Yo Ma and the second corre-
sponding to Eric Miller, one of the co-authors of this paper. These
two examples illustrate several salient aspects of the Semantic Web
that are important to Semantic Search.

Documents vs Real World Objects:The Semantic Web is not a
Web of documents, but a Web of relations between resources
denoting real world objects, i.e., objects such as people,
places and events. In the first example we have objects such
as the city of Paris, the musician Yo-Yo Ma, an auction event,
the music album Appalachian Journey, etc. In the second
example, we have the person Eric Miller, the W3C Seman-
tic Web Activity, the organization W3C, the city of Dublin,
Ohio, etc.

Human vs Machine Readable Information: In Figure 2, we have
a resource corresponding to Eric Miller. This is not the string
Eric Miller , but a resource denoting a person. There are
many people with the name Eric Miller. This denotes only
one particular person with that name. The salient point about
the Semantic Web is that it contains rich machine readable
information about these resources. Compare the data in Fig-
ure 2 with Eric Miller’s home page (http://www.w3.org/ Peo-
ple/EM/). Eric’s home page contains more human readable
information than Figure 2, but almost all the machine under-
standable parts of that Web page correspond to how it should
be displayed by a browser. The data in Figure 2 on the other
hand, is almost all machine understandable. It states, in a
machine understandable language, that Eric is a person, that
Eric works for the W3C, etc.

Relation between the HTML & Semantic Web: The Semantic
Web is an extension of the current Web. As Figure 2 shows,
there is a rich set of links from the nodes in the Semantic Web
to HTML documents. These relations typically connect a
concept in the Semantic Web with the pages that most pertain
to it.

It is also possible that some of the pages in the current Web
contain semantic markup ([10] [3]). However, Semantic Search

700



Figure 1: A segment of the Semantic Web pertaining to Yo-Yo Ma

Figure 2: A segment of the Semantic Web pertaining to Eric Miller

701



as described in this paper does not use such markups. We as-
sume that robots will gather such markups so that they are
available on the Semantic Web.

Distributed Extensibility: Another important aspect of the Seman-
tic Web is that different sites may contribute data about a
particular resource. In the example shown in Figure 1, many
different sources have data about Yo-Yo Ma and related re-
sources. Amazon and CDNow have data about his albums,
Ebay has data about auctions related to these albums, Tick-
etMaster has data about his concert schedule, AllMusic has
data about where he was born (Paris), and so on. Each of
these sites can publish data about Yo-Yo Ma without getting
permission from any centralized authority, i.e., they can all
extend the cumulative knowledge on the Semantic Web about
any resource in a distributed fashion. Thisdistributed exten-
sibility is a very important aspect of the Semantic Web.

Of course, this feature leads to problems of its own. In a
world where anyone can publish anything, a lot of what gets
published cannot be trusted. In the current Web, we, as hu-
mans, use our intelligence, invoking concepts of brand, who
recommended what, etc. to decide whether to believe what a
Web site says. Programs, on the other hand, being relatively
unintelligent, do not have recourse to all these facilities to
decide whether to believe the data from a new site on the Se-
mantic Web. This is an important problem that will need to
be addressed [18].

2. SEMANTIC SEARCH INTRODUCTION
As with the WWW, the growth of the Semantic Web will be driven
by applications that use it. Semantic search is an application of the
Semantic Web to search. Search is both one of the most popular
applications on the Web and an application with significant room
for improvement. We believe that the addition of explicit seman-
tics can improve search. Semantic Search attempts to augment and
improve traditional search results (based on Information Retrieval
technology) by using data from the Semantic Web.

Traditional Information Retrieval (IR) technology is based almost
purely on the occurrence of words in documents. Search engines
like Google [9]), augment this in the context of the Web with infor-
mation about the hyperlink structure of the Web. The availability of
large amounts of structured, machine understandable information
about a wide range of objects on the Semantic Web offers some
opportunities for improving on traditional search.

Before getting into the details of how the Semantic Web can con-
tribute to search, we need to distinguish between two very different
kinds of searches.

Navigational Searches:In this class of searches, the user provides
the search engine a phrase or combination of words which
s/he expects to find in the documents. There is no straight-
forward, reasonable interpretation of these words as denoting
a concept. In such cases, the user is using the search engine
as a navigation tool to navigate to a particular intended doc-
ument. We are not interested in this class of searches.

Research Searches:In many other cases, the user provides the
search engine with a phrase which is intended to denote an
object about which the user is trying to gather/research in-
formation. There is no particular document which the user

knows about that s/he is trying to get to. Rather, the user is
trying to locate a number of documents which together will
give him/her the information s/he is trying to find. This is the
class of searches we are interested in.

Example: A search query like “W3C track 2pm Panel” does not
denote any concept. The user is likely just trying to find the page
containing all these words. On the other hand, search queries like
“Eric Miller” or “Dublin Ohio”, denote a person or a place. The
user is likely doing an research search on the person or place de-
noted by the query.

Semantic search attempts to improve the results of research searches
in 2 ways.

• Traditional search results take the form of a list of docu-
ments/Web pages. We augment this list of documents with
relevant data pulled out from Semantic Web. The Semantic
Web based results are independent of and augment the re-
sults obtained via traditional IR techniques. So, for example,
a search for Yo-Yo Ma might get augmented with his cur-
rent concert schedule, his music albums, his image, etc. (see
Figure 3.)

• The search phrase in Research Searches typically denotes
one (or occasionally two) real-world concepts. We believe
that it might be useful for the text retrieval part of the search
engine to have an understanding of these concepts denoted
by the search phrase. Understanding the denotation can help
understand the context of the search, the activity the user
is trying to perform, drive expectations on the categories of
documents (pertaining to the object) likely to exist, etc.

Most of this paper is related to augmenting search results with data
from the Semantic Web. In Section 6 we briefly describe the ap-
proaches we are taking to achieve the second goal.

We have built two Semantic Search systems. The first system, Ac-
tivity Based Search (ABS), provides Semantic Search for a range
of domains, including musicians, athletes, actors, places and prod-
ucts. The second system (W3C Semantic Search) is more focused
and provides Semantic Search for the website of the World Wide
Web Consortium (http://www.w3.org/). In both of these systems,
we use the Google [9] search engine to provide the traditional text
search results.

Since the Semantic Web does not yet contain much information, in
addition to the Semantic Search application, we have had to build
the requisite portions of the Semantic Web to provide data for the
Semantic Search applications. Both the Semantic Search applica-
tion and these portions of the Semantic Web have been built on top
of the TAP infrastructure, which is described in the next section.

3. THE TAP INFRASTRUCTURE
TAP [17] is intended to be an infrastructure for applications on the
Semantic Web. TAP provides a set of simple mechanisms for sites
to publish data onto the Semantic Web and for applications to con-
sume this data via a minimalist query interface calledGetData. We
first describe this query interface and then discuss some of the fa-
cilities provided by TAP for publishing and consuming data.

702



3.1 The GetData Query Interface
A number query languages have been developed for RDF ([11],
[12], [14]), DAML ([2]) and more generally for semi-structured
data ([13], [6]). Why do we need yet another query language?

These query languages all provide very expressive mechanisms that
are are aimed at making it easy to express complex queries. Unfor-
tunately, with such expressive query languages, it is easy to con-
struct queries that require a lot of computational resources to pro-
cess. Consequently, just as no major Website provides a SQL in-
terface to its back end relational database, we don’t expect sites,
especially large ones, to use these query languages as the exter-
nal interface to their data. What we need is a much lighter weight
interface, one that is both easier to support and more importantly,
exhibits predictable behavior. Predictable behavior is important not
just for the service provider, but also the service client. A simple
lightweight query system would be complementary to more com-
plete query languages mentioned above. The lighter weight query
language could be used for querying on the open, uncontrolled Web
in contexts where a site might not have much control over who is
issuing queries, whereas the latter is targeted at the comparatively
better behaved and more predictable area behind the firewall. The
lightweight query also does not preclude particular sites from ag-
gregating data from multiple sites and providing richer query inter-
faces into these aggregations.

GetData is intended to be a simple query interface to network ac-
cessible data presented as directed labeled graphs. GetData is not
intended to be a complete or expressive query language a la SQL,
XQuery, RQL or DQL. It is intended to be very easy to build, sup-
port and use, both from the perspective of data providers and data
consumers.

We want to enable machines to query remote servers for data. Since
SOAP [7] provides a mechanism for performing RPC that is begin-
ning to be widely accepted, GetData is built on top of SOAP.

GetData allows a client program to access the values of one or more
properties of a resource from a graph. Each query-able graph has
a URL associated with it. Each GetData query is a SOAP message
addressed to that URL. The message specifies two arguments: the
resource whose properties are being accessed and the properties
that are being accessed.

The answer returned for a GetData query is itself a graph which
contains the resource (whose properties are being queried) along
with the arcs specified in the query and their respective targets
/sources. Application programming interfaces hide the details of
the SOAP messages and XML encoding from the programmer. So,
as far as an application using the Semantic Web via GetData is
concerned, it gets an API which (in an abstract syntax) looks like:

• GetData(< resource >, < property >) ⇒< value >

Below are some examples of GetData, in an abstract syntax, oper-
ating against the graphs shown in Figures 1 and 2.

• GetData(< Y o−Y oMa >, birthplace),⇒< Paris, France >

• GetData(< Paris, France >, temperature),⇒ 57F

• GetData(< EricMiller >, livesIn),⇒< Dublin, Ohio >

<Yo-Yo Ma>, <Paris, France>, <Eric Miller> and <Dublin,
Ohio> are references to the resources corresponding to Yo-Yo Ma,
the city of Paris, France, the person Eric Miller, and the city of
Dublin, Ohio. Typically, references to resources are via the URI
for the resource. In this case, using the TAP KB [16], these URIs
are
http://tap.stanford.edu/data/MusicianMa,Yo-Yo
http://tap.stanford.edu/data/CityParis,France
http://tap.stanford.edu/data/W3CPersonMiller,Eric and
http://tap.stanford.edu/data/CityDublin,Ohio.

Each of the above GetData queries is a SOAP message whose end
point is the URL corresponding to the graph with the data.

GetData also allows reverse traversal of arcs, i.e., given a resource,
a client can request for resources that are the sources of arcs with a
certain label that terminate at that resource.

In addition to the core GetData interface, there are two other inter-
faces provided by TAP to help graph exploration. These are,

Search: The search interface takes a string and returns all the re-
sources one of whose “title properties” contains the string (in
the graph at the URL the query is addressed to). A title prop-
erty is one which in an instance of the class TitleProperty in
the TAP KB.

Reflection: The reflection interfaces, which are similar to the re-
flection interfaces provided by object oriented languages, re-
turn lists of arcs coming into and going out of a node. This
is very useful for exploring a graph in the vicinity of a node
without any knowledge of what might be around.

3.2 TAP Scraping
As mentioned earlier, since the Semantic Web is still rather sparse,
we have had to build the requisite portions of it so as to enable
Semantic Search.

All the data required for the W3C Semantic Search application
came from RDF files maintained by the W3C. This data was pub-
lished using TAPache (discussed in the next section). However, for
the larger application dealing with musicians, athletes, places, etc.,
we had to construct HTML scrapers to get the data off popular sites
such as Amazon, AllMusic, TicketMaster and others who have data
about these objects. To facilitate this, TAP provides an infrastruc-
ture for interpreting a GetData request, mapping it to an appropriate
scraping task and executing the scraping so that a client can pretend
that the site offers a GetData interface to its data.

3.3 TAP Publishing
On the server side, TAP provides TAPache, an Apache HTTP server
[1] module, for exposing data via the GetData interface. TAPache’s
goal is to make it extremely simple to publish data onto the Seman-
tic Web. TAPache is not intended to be a high end solution for sites
with large amounts of data and traffic. Flexibility and scalability
are much more important than ease of use for such sites.

With the Apache HTTP server, there is a directory (typically called
html or htdocs), in which one places files (html, gif, jpg, etc.) or
directories containing such files, as a result of which these files
are made available via http from that machine. Similarly, with

703



TAPache, one creates a sibling directory (typically called data) to
the html directory and places RDF files in this directory. The graphs
encoded in these files are automatically made accessible via the
GetData interface. The URL associated with each graph is that of
the file.

TAPache compiles each file (or if the files are small, aggregations
of files) into memory-mappable graph structures so that queries is-
sued against the files can be answered without incurring parsing
overhead each time.

TAPache also provides a simple mechanism for aggregating the
data in multiple RDF files. All the RDF files places under a cer-
tain directory can be viewed as an aggregate, available at the URL
associated with the directory.

3.4 Registries and Caching
Different sites/graphs have different kinds of information (i.e., dif-
ferent properties) for different types of resources. Each GetData
request is targeted at a particular URL corresponding to a graph
which is assumed to have the data. Once we have a number of these
graphs, keeping track of which graph has what data can become too
complex for a client to handle.

We use a simple registry, which is available as a separate server,
to keep track of which URL has values for which properties about
which classes of resources. The registry can be abstracted as a
simple lookup table which given a class and a property returns a list
of URLs which might have values for that property for instances
of that class. More complex registries, based on descriptions of
objects, are also available as part of TAP. With the registry in place,
a client can direct the query to the registry which then redirects the
query to the appropriate site(s).

Querying many different sites dynamically can result in a high la-
tency for each query. In order to provide reasonable performance,
we cache the responses to GetData requests. This caching is part of
the registry’s functionality.

What we are trying to do here is in many ways similar to what the
Domain Name Service (DNS) does for data about internet hosts.
DNS provides a unified view of data about internet hosts sitting
across millions of sites on the internet. Different kinds of servers
store their host information differently. But what DNS does is to
provide a uniform view into all this data so that a client can pretend
that all of this data is sitting locally on their nameserver. Taking
the analogy further, one could regard GetData as an extension of
GetHostByName, the core query interface for DNS. Just as GetH-
ostByName enables a client to query for one particular property
(the IP address) of one class of objects (Internet Hosts), GetData
enables a client to query for many different kinds of properties of
many classes of objects.

TAP also provides for other functionalities such as semantic nego-
tiation, to help reconcile different URIs used for the same object,
but those topics are beyond the scope of this paper.

4. DATA SOURCES
In this section, we will describe the data sources on the Semantic
Web used by the two Semantic Search systems we have built, ABS
and W3C Semantic Search.

The data for ABS comes from a large number of sources. Many

different sites have data about musicians, athletes, places and prod-
ucts. Most of these sites do not yet make their data available in a
machine understandable form. To overcome this, we have written
HTML scrapers which dynamically locate and convert the relevant
pages on these sites into machine readable data and make them
available via the GetData interface. Some of the sites we have writ-
ten scrappers for include AllMusic, Ebay, Amazon, AOL Shopping,
TicketMaster, People Magazine, Weather.com, Mapquest, Carpoint,
Digital Cities and Walmart.com. Because of these scrapers, the Se-
mantic Search application can pretend that the data on each of these
sites is available via the GetData interface. Given the number of
data sources and their distributed nature of its data sources, ABS
makes extensive use of the registry and caching mechanisms pro-
vided by TAP. All these data source together yield a Semantic Web
with many millions of triples.

A very important source of data for ABS is the TAP Knowledge
Base [16], which is a very shallow but very broad knowledge base
about a range of domains, including people (musicians, athletes,
actors, politicians), organizations (companies, music groups, sports
teams), places (cities, countries, states) and products. For each
resource, it provides us with therdf:type and rdfs:label(s)for the
object. For the ABS system, the TAP Knowledge Base contributes
about 65,000 people, organizations and places, which together cover
about 17% of the searches that take place on an average day on the
ODP [4] Website.

In contrast to ABS data for W3C Semantic Search comes from a
relatively small number of sources, all of which are internal to the
W3C. There is also much greater uniformity in the kind of data
available about each object. We have experimented with two ver-
sions of W3C Semantic Search, one in which different portions of
the data are distributed across three geographically dispersed ma-
chines (California, Ohio, and Boston) and another in which all the
data is available on a single machine. As would be expected, the
latter case provides better performance.

W3C Semantic Search uses five different data sources, which to-
gether cover the following kinds of objects.

People: This includes W3C staff and authors of various W3C doc-
uments. The data sources include each staff members con-
tact, title and responsibilities.

W3C Activities: Each activity is related to the W3C people.

Working Groups and other Committees: Each of these is related
to the activity and staff

Documents: This includes recommendations, working drafts, W3C
notes, etc. Each of these is related to the working groups and
activities which produced them.

News: W3C Semantic Search incorporates data from a number of
RSS [5] news feeds about various newsworthy events hap-
pening at the W3C.

In addition, both systems incorporate a basic ontology about peo-
ple, places, events, organizations, etc., which comes from the TAP
Knowledge base. This ontology defines a large number of basic
vocabulary terms which are widely applicable across a number of
applications.

704



5. AUGMENTING SEARCH WITH DATA
As described earlier, we have two goals in Semantic Search. The
first is to augment traditional search results with data pulled from
the Semantic Web. The second is to use an understanding of the
denotation of the search term to improve traditional search. In this
section we describe how Semantic Search augments the results of
traditional search. There are three main problems to be addressed
in doing this.

Denotation: We need to determine the concept denoted by the
search query, if any.

What to show: We need to determine what relevant data to pull
from the Semantic Web.

Presentation: We need to appropriately format the data/triples for
inclusion in the search results.

We look at each of these problems in turn. Before that, we first
discuss an assumption made by Semantic Search about the data
and then briefly discuss the system architecture.

5.1 Assumptions about the Data
Different sites on the Semantic Web might provide different kinds
of data about an object. In general, it will be difficult, if not im-
possible, to control what kind of data is available about any given
object. This is in stark contrast to traditional relational database
systems which have fixed schemas and integrity constraints which
ensure that a uniform set of information is available about any given
type of object. This lack of uniformity in the data available about
any particular object can be problematic for applications on the
Semantic Web. Any given application typically has very specific
requirements for the kinds of data it needs. On the other hand, Se-
mantic Web applications should also be able to exploit new and
interesting pieces of data that might become available on the Se-
mantic Web. Hence, we need to balance the variations in the data
availability by making sure that at a minimum, certain properties
are available for all objects. In particular, we make sure that for
each object, we have data about what kind of object it is and how
it is usually referred to, i.e., that itsrdf:typeandrdfs:label is avail-
able. In addition we also make sure that a small number (preferably
just one) of data sources have this core information for all of the ob-
jects that we are interested in. In some contexts, we may be able
to rely on certain data sources providing certain pieces of data. In
such cases, the application should be able to exploit this.

5.2 System Architecture
The Semantic Search application runs as a client of the TAP in-
frastructure. It runs alongside the search engine. When the search
query is recieved, the search front end, in addition to sending the
query to the search backend, also invokes the Semantic Search ap-
plication. The Semantic Search application access the Semantic
Web via the TAP client interfaces (GetData, search and reflection
interfaces) to perform the three steps mentioned above.

5.3 Choosing a Denotation
The first step is to map the search term to one or more nodes of the
Semantic Web. This is done by using the search interface provided
by TAP. A TAP search query is issued to the one (or few) sites
known to contain therdf:typeandrdfs:label information for all the
objects we are interested in. This might return no matches (i.e., no

candidate denotations), a single match or multiple matches. There
are two ways in which a search term may map to more than one
node in the Semantic Web.

Ambiguity: More than one term in the Semantic Web has the search
term (or a subset of the search term) as its rdfs:label or one
of the other properties indexed by the search interface. For
example, in ABS, the search query “Paris” could either map
to the city Paris, France or the city Paris, Texas, the music
group Paris or ... In this case, we have to pick one of these as
a preferred denotation. This choice can be made based on a
number of different factors, including,

• The popularity of the term as measured by its frequency
of occurrence in a text corpus or the availability of data
on the Semantic Web. E.g., Paris, France is a preferred
denotation for “Paris”, compared to Paris, Texas, the
music group Paris, etc.

• The user profile may be guide selection of the denota-
tion. E.g., the phrase “Quark”, as used by a Star Trek
fan might be more likely to denote the Star Trek char-
acter than the subatomic particle.

• The search context can also help select the denotation.
If the user has been searching for information about
musicians, the query “Pink” may more likely denote
the musician than the color.

Denotations other than the preferred one are also offered to
the user by the system as part of the search user interface
so that the user can select one of those if that is what s/he
intended.

Complex Search Term: In some cases, subsets of the search term
map to different nodes. For example, the query “eric miller
rdf” can be broken down into “eric miller”+”rdf”, the first
mapping to the node corresponding to the person Eric Miller
and the second mapping to the Resource Description Frame-
work. It is possible to take this too far and map any query,
including navigational queries into complex search terms. To
avoid this, we restrict complex search terms to only two de-
notations.

If the search term does not denote anything known to the Seman-
tic Web, then we are not able to contribute anything to the search
results. Hence it is important for the Semantic Web to have knowl-
edge of a very broad range of terms. In our experiments, ABS
covers about 17% of the searches encountered on the Website of
the Open Directory Project [4]. Early analysis of the service run-
ning at the W3C indicate the local knowledge base covers 85% of
the most common search queries encountered on the Website.

5.4 Determining What to Show
Once we have either a single node (or a pair of nodes) correspond-
ing to the search term, the next task is to determine what data from
the Semantic Web we should incorporate as part of the search re-
sults, and in what order. As with traditional search, deciding what
to show and in what order is one of the central problems of Seman-
tic Search. This problem can be visualized in terms of the Semantic
Web graph as follows. The node which is the selected denotation of
the search term, provides a starting point. We will refer to this node
as theAnchor Node. We then have to choose a subgraph around this

705



Figure 3: Text Search Results Augmentated with Data from the DataWeb. Left : Search for ’Eric Miller’ on the W3C Web site
showing overall page and data augmentation. Right: Data augmentation alone for search on ’Yo-Yo Ma’

706



node which we want to show. In the case of the search term denot-
ing a combination of terms, we have two anchor nodes from which
we have to choose the subgraph. Having chosen the subgraph, we
have to decide the order in which to serialize this subgraph in the
results presented to the user.

We start with a simple syntactic approach which is widely applica-
ble but has several limitations. We then introduce various modifi-
cations and enhancements to arrive at the approach which provides
adequate results.

The simple approach for selecting the subgraph, based purely on
the structure of the graph, treating all property types as equally rel-
evant, would be to walk the graph in a breadth first order, starting
with the anchor node, collecting the first N triples, where N is some
predefined limit. This basic approach can be improved by incorpo-
rating different kinds of heuristics in how the walk is done, so as to
produce a more balanced subgraph. Some heuristics include,

• Include at most N triples with the same source and same arc
label, where N is either preset or computed based on the aver-
age branching factor (i.e., the bushiness) of the graph around
the anchor node.

• Include at most M triples with the same source, where M is
either preset or computed based on the bushiness of the graph
around the anchor node. Further, M could be a function of
the distance of the node from the anchor node. This heuris-
tic results in the inclusion of more information about nodes
closer to the anchor node.

The graph collection procedure is modified for the case of pairs
of nodes denoted by the search term. In this case, in addition to
collecting triples in the vicinity of each of the nodes, we also lo-
cate one or more paths connecting the nodes and include the triples
involved in these paths.

The intuition behind this approach is that proximity in the graph
reflects mutual relevance between nodes. This approach has the ad-
vantage of not requiring any hand-coding but has the disadvantage
of being very sensitive to the representational choices made by the
source on the Semantic Web. This approach also has the property of
being able to incorporate new pieces of information, about the an-
chor node and its neighbors, as they appear on the Semantic Web,
without changing anything in the Semantic Search engine. This
property is both a feature and a bug. It enables Semantic Search to
provide richer results as the Semantic Web grows, but also makes
the system more susceptible to spam and irrelevant information.

Another problem with this approach is that it ignore the search con-
text. For example, a search for “Eric Miller” on the W3C Website
should use different data from the Semantic Web compared to the
same search on the Miller family Web site. There is no way of
getting this effect with this approach.

A different approach is to manually specify, for each class of object
we are interested in, the set of properties that should be gathered.
We do a breadth-first walk of the graph, collecting values for these
properties till we have gathered a certain number of triples. For ex-
ample, we specify that for instances of the class W3CStaff (call the
instanceO), we collect triples and values whose target or source is
O and whose property is one oftitle, imageURL, involvedInActiv-
ity, hasAuthorandhasEmailAddress. So, for example, if the anchor

node corresponds to Eric Miller, this will give us a set of triples and
also a new set of nodes (the nodes corresponding to the Semantic
Web Activity and the RDF Primer) which are the targets/sources
of the triples with the properties involvedInActivity and hasAuthor.
For each of these nodes, based on the type of the node we collect a
new set of triples. This process continues till we either run out of
new triples or we have collected enough triples.

This approach has the advantage that specifying only certain prop-
erties provides a kind of filter, thereby producing more dependable
results. It is also easily customizable so as to be able to factor the
search context in determining which properties should be retrieved.
However, it requires more work to set up, and is also not able to in-
corporate new kinds of information as it appears on the Semantic
Web.

A hybrid approach, which has most of the benefits of both these
approaches is as follows. We first apply the second approach to the
extent we have specifying properties available. If not enough data
has been collected, we do a more general graph walk, as per the
first approach, only looking at property types not examined in the
first pass.

The triples thus collected are clustered and ordered, first by the
source, based on the proximity to the Anchor Node and then by the
arc-label.

5.5 Formatting
The final problem is that of showing the data thus collected to the
user. This is really a function of the overall search user interface,
but for the sake of completeness, we describe how the Semantic
Search application does this.

The display of the triples (independent of how the triples are col-
lected) in the search results page is done by a set of templates. With
each class of objects we are interested in, we associate an ordered
set of templates. Each template specifies the class it applies to and
the properties (of the templated object) that must be available for
it to apply, and an HTML template for presenting the results. We
walk through the ordered list of nodes collected, identify the tem-
plate for it, generate the HTML and include them in the user inter-
face of the search results. There may some triples left over, i.e., not
covered by the chosen template. These are covered by smaller tem-
plates associated with each property type, each of which formats
a single triple at a time. The templates can be encoded either in a
declarative templating language we have developed or in a scripting
language such as Perl.

Figure 3 show the results of search augmentations for searchEric
Miller in W3C Semantic Search and forYo-Yo Main ABS.

5.6 Emperical Evaluation
We are in the process of empirically evaluating the usefulness of
augmenting search with data from the Semantic Web. This test is
being done with W3C Semantic Search. A randomly chosen anony-
mous set of people doing search on the W3C website are presented
with the W3C Semantic Search instead of the regular search results.
On each of these pages, each of the regular search results and links
in the data augmenting the search is sent through a redirector which
records the search query, the link and which section of the page the
link was on. The fraction of times the user clicked on a link in the
data augmentation (as opposed to one in the regular search results)
tells us how useful the user found the data augmentation.

707



6. SEMANTICS FOR TEXT SEARCH
In the last section we described how Semantic Search augments the
results of traditional search with data from the Semantic Web. We
would also like to be able to use the Semantic Web to improve the
results of the text search itself. Intuitively, the text search should be
able to exploit an understanding more about what the user is trying
to find information about.

Work in Latent Semantic Indexing [15] and related areas has ex-
plored the use of semantics for information retrieval. However,
much of that work has focussed on generating the semantic struc-
tures from text. With the Semantic Web, we are already given
a large-scale, albeit distributed,explicit semantic structure, con-
structed independently from the text being searched.

There will likely be many different ways in which data from the
Semantic Web will get used to filter and rank text search results.
In this section, we describe one particular problem we are trying to
solve.

Google has about 136,000 results for a search on “Yo-Yo Ma”.
Manual analysis of the first 500 of these results shows that all 500 of
them refer to the same person, i.e., the famous cellist Yo-Yo Ma. On
the other hand, the search “Eric Miller” yields 1,400,000 results,
the first 20 of which refer to at least 16 different Eric Millers. Sim-
ilarly, the search “Matrix” yields 4,380,000 results and included in
the first 20 are references to a movie, the mathematical concept,
four different companies, a data center, a monastery, a display de-
vice, a hair care product and an on-line community. The user is
likely searching for information about one particular Eric Miller or
one of the denotations of the word “Matrix”. Unfortunately, there
is no easy easy way of communicating this to the system.

Our goal is to enable a search engine to understand that different
occurrences of the same string denote different things and to further
filter and rank the results to show documents referring to the chosen
denotation. Our initial focus is on search queries denoting people.

We first need to provide the user with a simple, unobtrusive mech-
anism for identifying the right denotation. In some cases (e.g., the
word “jaguar”), there are a small number of primary denotations
(the animal, the car and the sports team) and we can pick one and
list the others (at the top of the search results) to let the user pick
one of the others as the intended denotation. In many other cases
(such as Matrix or Eric Miller), where there are many thousands of
potential denotations, the approach of listing all the possible deno-
tations separately from search results does not work. So, we modify
the presentation of the search results so that each search result has
an additional link next to it with which the user can tell the search
enginethis is the intended denotation. For example, applied to
the Google search interface, the first result on the search for “Eric
Miller” could look like the following:

Eric Miller’s Home Page
W3C, Eric Miller. Semantic Web Activity Lead. ...
Lead for the W3C World Wide Web Consortium’ ...
www.w3.org/EM/ - 4k - Cached- Similar pages- This Eric Miller

Once the user has picked the right denotation, we now face the big-
ger problem of determining the likelihood of a document denoting
our chosen denotation.

We provide a brief summary of the approach we are taking. We
are using a knowledge based approach in which we identify and
encode a number of different heuristics, each of which might apply
in different cases. We list three sample heurisitcs here:

• Just knowing that the user is searching for information about
a person (as opposed to documents containing the two strings
“Eric” and “Miller”) can help avoid several mistakes. It can
help eliminate documents in which both these words occur,
but in completely different parts of the document. For exam-
ple, it can enable the search engine to realize that a document
with the sentence “Rob is Cool” or “Eric likes Miller beer” is
likely not as accurate a result as a document with the sentence
“Someone with an email address of (robm@ksl.stanford... or
em@w3.org) said that ...”.

• The type of the person (denoted by the search term) drives
expectations about various categories of information that
might be available about it, which in turn can help sort the
search results. For example, if the person is a musician,
we can expect to find pages about albums, about his con-
cert schedule, fan pages, etc. On the other hand, if the object
is a professor, we can expect to find pages related to his pa-
pers, course offerings and research. We don’t expect to find
research papers by musicians or concert schedules for pro-
fessors. This heuristic can be used when the Semantic Web
knows about the intended denotation.

• It might be a while before the Semantic Web knows about all
the Eric Millers referenced on the Web. Even in this case,
where the Semantic Web does not yet know about the in-
tended denotation, knowledge about people in general can
be used. For example the co-occurrence of unique string val-
ued properties of the chosen person (such as his/her email
address), can help the system decide whether two documents
are referring to the same Eric Miller.

Given that most searches on the Web are about a relatively small
number of categories, and that each category only needs a few
heuristics, we believe that this approach will greatly help users
identify which object they are searching for information about and
get documents with a high likelihood of referring to that object
ranked higher in the search results.

7. CONCLUSIONS AND FUTURE WORK
The widespread availability of machine understandable informa-
tion has the potential to deeply impact many important Web appli-
cations, including search. In particular, we believe that research
oriented search queries can significantly exploit the emerging Se-
mantic Web. In this paper, we showed two mechanisms by which
this might happen, with an emphasis on augmenting search results
from the Semantic Web. Our future work is focused on helping
the text search component of such a hybrid system exploit a deeper
understanding of the search term’s denotation.

8. ACKNOWLEDGEMENTS
The material presented here is the work of many people over a long
period of time. The original TAP infrastructure was built as a part
of Alpiri Inc. We thank all the people who made that possible, in
particular Arvind Sundarajan and Kate Joly. We would like to thank
Ed Feigenbaum, Richard Fikes, Deborah McGuiness and Shiela
McIlraith of the Knowledge System Lab at Stanford. We would

708



also like to thank Dan Brickley. The first author would like to thank
IBM Almaden for its help and support.

9. REFERENCES
[1] The apache http server.http://www.apache.org/ .

[2] Daml query language.http://www.daml.org/dql/ .

[3] Darpa agent markup language.
http://www.daml.org/ .

[4] The open directory project.http://www.dmoz.org/ .

[5] Rdf site summary.
http://www.purl.org/rss/1.0/ .

[6] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu,
J. Robie, J. Simeon, and M. Stefanescu. XQuery 1.0: An
XML query language. http://www.w3.org/TR/xquery/, 30
April 2002. W3C working draft.

[7] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winder.
Simple Object Access Protocol.
http://www.w3.org/TR/SOAP/ , May 2000.

[8] D. Brickley and R. V. Guha. Rdf schema.
http://www.w3.org/TR/rdf-schema/ .

[9] Google.http://www.google.com .

[10] J. Heflin and J. Hendler. Searching the web with shoe. In
AAAI-2000 Workshop on AI for Web Search.

[11] G. Karvounarakis, S. Alexaki, V. Christophides,
D. Plexousakis, and M. Scholl. Rql: a declarative query
language for rdf. InWWW, pages 592–603, 2002.

[12] B. McBride. Jena: Implementing the rdf model and syntax
specification. http://www-
uk.hpl.hp.com/people/bwm/papers/20001221-paper/, 2001.
Hewlett Packard Laboratories.

[13] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A database management system for
semistructured data.SIGMOD Record (ACM Special Interest
Group on Management of Data), 26(3):54, 1997.

[14] L. Miller, A. Seaborne, and A. Reggiori. Three
implementations of squishql, a simple rdf query language. In
International Semantic Web Conference, pages 423–435,
2002.

[15] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and
S. Vempala. Latent semantic indexing: A probabilistic
analysis. pages 159–168, 1998.

[16] R.Guha and R. McCool. The tap knowledge base.
http://tap.stanford.edu/ .

[17] R.Guha and R. McCool. Tap: Towards a web of data.
http://tap.stanford.edu/ .

[18] R. Siebes and F. van Harmelen. Ranking agent statements for
building evolving ontologies. In P. Bouquet, editor,Workshop
on Meaning Negotiation, in conjunction with the Eighteenth
National Conference on Artificial Intelligence, July 2002.

709


