

T. Schwentick and D. Suciu (Eds.): ICDT 2007, LNCS 4353, pp. 28 – 43, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Beauty and the Beast: The Theory and Practice of
Information Integration

Laura Haas

IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120
laura@almaden.ibm.com

Abstract. Information integration is becoming a critical problem for businesses
and individuals alike. Data volumes are sky-rocketing, and new sources and
types of information are proliferating. This paper briefly reviews some of the
key research accomplishments in information integration (theory and systems),
then describes the current state-of-the-art in commercial practice, and the
challenges (still) faced by CIOs and application developers. One critical
challenge is choosing the right combination of tools and technologies to do the
integration. Although each has been studied separately, we lack a unified (and
certainly, a unifying) understanding of these various approaches to integration.
Experience with a variety of integration projects suggests that we need a
broader framework, perhaps even a theory, which explicitly takes into account
requirements on the result of the integration, and considers the entire end-to-end
integration process.

Keywords: Information integration, data integration, data exchange, data
cleansing, federation, extract/transform/load.

1 Introduction

“For us…growth is a way of life. So we’ll continue to grow”1. Nearly two thirds of
CEOs surveyed recently said that growth is the key priority, requiring quick delivery
of new products and services in response to rapidly changing market conditions [2].
Yet only 13% felt that their business was well-positioned to react quickly [2]. They
stressed the need to capture and understand all available information to make rapid
business decisions, but today that is not such an easy task. In fact, 68% of the CEOs
listed the integration of disparate applications and infrastructure as a key issue for
their business, one that slows them down and stops the flow of information [2].
Meanwhile, customers tell us that 30% of their people’s time is spent just looking for
the information they need to do their jobs.

Why is information so hard to find? Partly, this is due to the increasing volumes of
information available on line. But there is a second, deeper problem, and that is the
fragmentation of information, and the proliferation of information sources. Even

1 Mukesh Ambani, chairman and managing director of Reliance Industries, India’s largest

private sector company, as quoted in [1].

 Beauty and the Beast: The Theory and Practice of Information Integration 29

within a relatively controlled environment such as an enterprise Information
Technology (IT) organization, customers report many database instances, often
hidden behind applications, not to mention document repositories and other sources of
unstructured information. For example, analysts report [3] that 79% of companies (of
all sizes) have more than two document stores, while 25% have more than fifteen.
Information is not only hard to find, but further complications such as overlapping,
conflicting and incomplete information are inevitable. Almost any business with
multiple business units has multiple sources of customer information, for example –
often with conflicting information for the same customers.

Information integration is the database community’s answer to these problems. The
goal of information integration is to enable rapid development of new applications
requiring information from multiple sources. This simple goal hides many challenges,
from identifying the best data sources to use, to creating an appropriate interface to
(or schema for) the integrated data. Much research has focused on how best to do the
integration itself, for example, how to query diverse sources with differing
capabilities and how to optimize queries or execution plans. Other issues concern how
to cleanse information to get a consistent view, how to deal with uncertainty and trace
data lineage, and how to identify the same object in different data sources (a problem
known by various names, including entity resolution). There has been a lot of
progress on individual challenges, but information integration remains a difficult task.
We believe that one reason for that is that these challenges are inter-related, part of
the overall process of integration, and yet have been largely considered in isolation.
Thus, the separate solutions do not always work well together. Perhaps more
importantly, the solutions that are relevant to a particular integration task depend
heavily on the application requirements regarding data qualities (e.g., currency,
consistency, completeness) and quality of service (e.g., response time, availability,
resources consumed). We lack a clear view of information integration that positions
the various technologies relative to each other and relative to the application
requirements for the integration problem that must be solved.

The rest of this paper is structured as follows. Section 2 elaborates on the overall
information integration challenge, and presents an extended example of a real
integration problem to motivate our suggestions for future work. In Section 3, we
briefly survey the research underpinnings of information integration, showing how the
research applies to our example, while Section 4 reviews the state of the art in the
industry today, showing what products are available for use. Section 5 comes back to
the issue of unification and the end-to-end information integration problem. We pose
a new challenge to the research community with both theoretical and systems
implications, and explore several possible approaches. Finally, the paper concludes in
section 6.

2 Information Integration Illustrated

There is no one integration problem; the challenges vary depending on the
environment. In this paper, we focus on information integration within an enterprise.
This environment typically includes a broad mix of sources, many structured (e.g.,
relational or other databases), but increasingly many unstructured (e.g., document
repositories, web pages, email). The uses for the integrated data are likely to vary

30 L. Haas

greatly, from mission-critical applications to exploratory queries and everything in
between. A broad range of technologies is used to handle this range of needs. In this
section, we first provide an overview of the integration process in the enterprise
context, and then illustrate it through an extended example.

2.1 The Information Integration Process

Research on information integration has focused on particular aspects of integration,
such as schema mapping or replication, individually. But for businesses, information
integration is really a process, with four major tasks: understanding, standardization,
specification and execution.

Understanding. The first task in information integration is to understand the data.
This may include discovering relevant information (including keys, constraints, data
types, and so on) and analysing it to assess quality and to determine statistical
properties (for example, data distributions, frequent values, inconsistent values).
During this task the integrator may look for relationships among data elements (such
as foreign keys, or redundant columns) and possibly (for unstructured data) meaning.
Metadata is central to this phase, though used in all. Both tools and end users leverage
it to find and understand the data to be integrated. It is also produced as the output of
analysis, to be exploited by later tasks in the process.

Standardization. This task typically leverages the work of the previous task to
determine the best way to represent the integrated information. This includes
designing the “target” or integrated schema, deciding at the field level what the
standard representation should be (e.g., will full names be represented as first name
followed by last name, or last name comma first name?), and even defining the
terminology and abbreviations to use (“str” vs. “st” for “street”). In addition to these
rules on how data is represented, other rules that specify how to cleanse or repair data
may be provided. Issues here include how to handle inconsistent or incomplete data
(for example, if we find multiple phone numbers for the same person, should we keep
all of them, or only the most recent?) and how to identify data that refers to the same
objects (for example, is John Q Public the same person as John Public?).

Specification. In this step, the artifacts that will control the actual execution are
produced. As a result, the techniques and technologies used for specification are
intimately linked to the choice of execution engine(s). For example, mapping tools
specify the relationship between source(s) and target(s), and then typically can
generate a query or other executable artifact (e.g., XSLT) that would produce data in
the desired target form. Often, however, the specification is part of actually
configuring an integration engine to do the desired integration. Thus, determining the
execution engine should be thought of as part of specification.

Execution. This is where the integration actually happens. Integration can be
accomplished via materialization, federation and/or indexing. Materialization creates
and stores the integrated data set; this may be thought of as eager integration. There
are many techniques for materialization. Extract/Transform/Load (ETL) jobs extract

 Beauty and the Beast: The Theory and Practice of Information Integration 31

data from one or more data sources, transform them as indicated in the job script, and
then store the result in another data source. Replication makes and maintains a copy
of data, often differentially by reading database log files. Caching captures query
results for future reuse. Federation creates a virtual representation of the integrated
set, only materializing selected portions as needed; it can be thought of as lazy
integration. Federation is a form of mediation; in general, mediation refers to an
integration technique in which requests are sent to a “mediator” process which does
routing and translation of requests. Search takes a different approach, creating a
single index over the data being integrated. This is commonly used for unstructured
data, and represents a partial materialization, since typically the index identifies
relevant documents, which will be fetched dynamically at the user’s request.

Note that these tasks are interdependent, and existing tools often support (pieces
of) several of these tasks. They may be overlapped in practice; for instance, it is not
necessary to have a complete understanding before starting to standardize. Likewise, a
particular integration may not require all of the subtasks for any task, and in really
simple cases, some tasks may seem to vanish altogether.

The integration process is iterative, and never-ending. Change is constant; there is
always another source to deal with, a new application with new requirements, an
update to some schema, or just new data that requires analysis.

2.2 An Extended Example

Consider a typical integration problem. A major company, Grande, acquires a small
company, Chico, with less than fifty employees. Chico has three products, several
“databases” per product (ranging from design docs scattered about the file system to
requirements docs in a document management system to relational databases tracking
line items and owners, and so on), two orders databases (one for mail orders, one for the
web), a defect tracking database for support, and other information sources. Several
Chico IT staff members quit in the transition, so knowledge about the data is lost.

The combined enterprise needs to ensure that Chico continues to do business
during the transition (so their sales, support and development databases and processes
must continue to operate). But the duplication of databases, processes and IT staff is
costly, so they also need to consolidate their operations reasonably quickly. In the
meantime, they have immediate needs to correlate information across the old and new
systems. For example, Chico’s customers overlap with Grande’s. The new, bigger
Grande wants to send mail to all existing customers who might be interested in
Chico’s products, but not to those who already have them. They may want to quickly
get to a single phone number for support across the combined product set.

For our example, we’ll focus on this latter scenario. The support representative
answering the phone needs to be able to check customer entitlement quickly, i.e., he
must be able to look up a customer and discover the level of service for which the
customer has paid. Ideally, this would be solved by providing the support person with
a single list of customers, duplicates removed, information merged, or the equivalent.
But that is not so easy, as customer information for Chico is scattered across multiple
tables; there is no single customer list, even for Chico alone. Further, Chico checked
entitlement by looking up the product registration number in the orders database(s) to

32 L. Haas

Fig. 1. Chico’s customer-related data is spread over multiple data sources, in multiple formats.
Only partial schemas are shown; the real data would have many more tables, and columns, as
well as richer XML document types. Gathering full information on customer entitlement
requires detailed knowledge of the sources, a complex join and understanding the service types.

see if the customer bought support, and if so, at what level. Grande was more focused
on customer accounts, with a certain level of service for a customer based on overall
sales (e.g., Gold vs. Platinum customers). So not only is the information about
customers organized differently, but the semantics of customer entitlement are also
different for the two companies. Eventually, the combined company will want to
settle on a single scheme, but in the short term, they just want to continue to support
both customer sets, smoothly.

Janet Lee, a Grande IT architect, is asked to set up this combined customer support
system. Janet is not familiar with the Chico systems, of course, and because of the
loss of Chico staff, she will not have the benefit of their expertise. She needs first to
understand what information is available to her. She will need to find the Chico
customer information and information on what types of support exist. This
information is spread over order, billing and defect tables in multiple databases and in
the document management system that tracks contracts (Figure 1). She will probably
need to talk to someone in sales to understand the Chico support semantics, and she
will likely want to inspect or analyze the relational data so that she knows what she is
up against in terms of standardization. For that task, she will need to specify how to
represent various data, such as address (Chico doesn’t store state, and the address is
all in a single field, where Grande has state, city and zip all in separate fields). She
will design a merged representation, and define the rules that determine what happens
when there is disagreement (for example, when the same customer appears in both
databases with different information)2. She may also need to write rules to determine
when data refers to the same customer. Janet then needs to specify how to do the

2 Note that the order of these may vary a bit, for example, some tools would allow Janet to

write these “cleansing” rules as part of specifying the integration.

Web Sales Data (XML) Orders Database (Relational)

Defect Tracking (Relational)
Super
Service
Guarantee
T & Cs

Extended
Warranty
for Gyro
Model 2

Mail Orders (CustId, ProdID, ServiceTyp)
Billing (CustID, Address)

Defects (ContactName, ProdID, Phone)

<Customer>
ShipAddr, CC#

<Order>
Cust, ServiceLvl, Date Warranties (Text)

 Beauty and the Beast: The Theory and Practice of Information Integration 33

integration. Although there are some tools that will support an abstract, nonprocedural
way of doing this, for example, mapping tools, even these today tend to be associated
with a particular integration engine.

So Janet now faces the question of how to execute the actual integration. She
could, for example, choose to materialize the combined customer list. To do that,
she’ll need to define an Extract/Transform/Load (ETL) job, deciding how often it
needs to run, or whether it can be run once, and then refreshed incrementally at
regular intervals. A differential refresh might be better handled using a replication
product – and if the transformations needed are simple enough, the replication engine
might be all that is needed. In any case, she will need to set up one or both products
and configure them to reach the actual data sources, and to run her job or jobs.
Alternatively, she could choose to federate the various data sources, providing a
single (virtual) view of the combined data. In this case, she will need to set up and
configure the federation software to reach the data sources, and then define
appropriate views over the data. In a customer support environment, a good search
capability is typically critical. It is possible that Janet could return the information
needed by the support representative just via search. She will want to evaluate that
possibility, and possibly set up search software, configuring crawlers, getting an index
built, and so on. Of course, a combination of these various integration engines may be
the best approach – materializing critical information for the first, fast check, keeping
it up-to-date via replication, using federation to “drill down” if the customer has
further questions about their account, and using search as a way to retrieve details of
the relevant service plans.

How will Janet decide? To make her decision, she must take a number of factors
into account. She will think about the requirements of the task: how quickly must the
information be returned, how many end users will be using the system
simultaneously, whether it will be needed 24x7, and so on. Other requirements apply
to the data quality: how current must the data be, how complete, how accurate. Janet
will also think about the physical constraints on the solution, for example, how much
storage space is available, the processing power at her disposal, a limit on total cost,
perhaps. Finally, the policies Grande has in place for security or to comply with
relevant industry regulations will also affect the solution. For purposes of this paper,
we will refer to these varied types of requirements – qualities of service, qualities of
data, physical constraints and policies – as the solution desiderata. These desiderata
are critical to determining the best techniques to use for a particular scenario;
however, only Janet’s experience allows her to make the decision – there are no
studies or formal guidance on what desiderata require which integration techniques.

To summarize, in order to integrate enough data for this one critical but simple
scenario, Janet must go through quite a complex process. She will need to develop an
understanding of the data and its semantics. She will need to assess the quality and
degree of overlap of the data, identifying common customers and merging and
standardizing their information while dealing with any inconsistencies. She will need
to design the integrated view or target schema. Finally, she will need to choose one or
more integration engines to deploy, configure them to reach the various data sources,
and create the instructions needed (the ETL script, view, or program) for them to
instantiate the target schema. In our simple example, Janet is dealing with primarily
relational data. If some of the data is unstructured, her task is harder still. Fortunately,

34 L. Haas

the research and development communities have made great strides towards tools to
address these challenges. In the next two sections, we examine some of the highlights
of this work.

3 Research in Information Integration

There are thousands of papers relevant to information integration. Many focus on
some aspect of one of the stages of the process described above, e.g., discovering
primary keys (one piece of understanding the data). Others propose broader solutions
for specific environments, for example, querying deep web data sources. It is beyond
the scope of this paper to survey the literature (see [4] for an excellent introduction).
Instead, we categorize the work into four broad areas, one for each step in the
integration process, and provide a few pointers to work in each category, to give a
feeling for the accomplishments to date. Not all of the literature is amenable to this
crude categorization, as we also briefly illustrate. Despite the weighty body of
literature, the information integration challenge is far from solved, especially in the
enterprise context.

In the area of understanding the data and data sources, there has been much recent
cross-disciplinary work (spanning data management, information retrieval, statistics
and machine learning). Key areas of focus include structure discovery [5], which aims
to determine the schema for data automatically, data summarization and analysis
[6, 7], to determine characteristics such as value distributions and dependencies, text
analytics [8], which tries to find specific concepts in text, and source selection [9, 10],
which chooses the best data source(s) to answer a particular query.

Research on standardization has focused around several aspects of reconciling
different data sets [11, 12]. A key challenge is entity resolution (often known as
semantic resolution or deduplication), the problem of determining when two data
objects refer to the same real-world entity [13]. Other aspects under study include
dealing with inconsistent data [14, 15], and how to measure quality and incorporate it
in systems [16]. In general, if data can be inconsistent, there can be uncertainty,
sparking a renewed surge of interest in probabilistic databases [17].

In specification, the major topics of interest have been schema mapping and
schema matching [18, 19]; although work on dataflow systems [20] and workflow
[21] is also relevant, these technologies have not typically been applied to information
integration by the research community (though they are used in enterprises). Model
management [22] takes a broad view of managing and manipulating schemas. Schema
mapping tools such as Clio [23] help the user align a target schema with (potentially
multiple) source schemas, allowing a nonprocedural specification and typically
generating the runtime artifacts needed to populate the target schema from the
source(s). Dataflow programming could be used as a more procedural way to specify
how to create the target data; workflow tools are similarly procedural, but centered on
the operations rather than the data.

There are many ways to integrate information. As described in our example,
materialization, federation, search, as well as “application integration” techniques
(workflow or business process integration, hard-wired code, composing Enterprise

 Beauty and the Beast: The Theory and Practice of Information Integration 35

Java Beans, and so on) all may apply to the execution step. Initially, the research
community focused on integration via materialization, with emphasis on data
transformation [24], and replication [25, 26]. In the early 1980’s, attention shifted to
querying across distributed databases [27, 28], and more recently, to mediation
[29, 30, 31] approaches. The Garlic project [32] explored a form of mediation now
known as federation, which extended a relational query processor [33], and thus fit
easily into enterprise environments. Database theory has made strong contributions in
this area, both formalizing and extending these basic techniques [4, 34, 35]. While
search [36] was initially conceived of as a way to find unstructured information, it has
rapidly become a means of information integration [37], though with radically
different properties than either materialization or federation. While those integration
techniques allow for precise queries spanning data from multiple sources with
structured results composed of data from multiple sources, search poses an imprecise
query to one or more sources, and returns a ranked list of results, each typically from
a single source. This form of integration is “good enough” for some integration
scenarios, requires much less work for the initial three integration tasks in our
process, and may also be used as an aid to understanding the data.

Of course, not all work fits nicely into one of these categories. For example, many
papers are now focusing on integration in the context of the world-wide web [38].
These papers often tackle multiple steps, but in this narrower context. Likewise, much
research has been done on integration in the context of bioinformatics [39].
Specialized integration languages [40] and the use of domain ontologies [41] have
gained some traction in this community.

This discussion is far from comprehensive, but gives a flavor for both the broad
range of problems and the types of approaches that have been taken. The results have
led to great progress in the tools available to the industry, as we show in the following
section. However, while research has solved subsets of the overall problem, there is
little today in the way of complete and unified solutions.

4 The State of Information Integration in Practice

Out in the marketplace, tools for integrating information are proliferating. Many
smaller companies sell products addressing one or more of the integration steps we
have enumerated. Meanwhile, larger companies, most notably IBM and Informatica,
are consolidating tools for the various steps into powerful platforms for information
integration and access [42, 43]. Rather than trying to cover all the products on the
market, we will instead describe in some detail the present market leader, namely,
IBM Information Server [44].

IBM Information Server (IIS) is a platform for information integration. It consists
of a suite of products (Figure 2) that together cover all the integration tasks. There are
multiple products for any task. For example, IIS includes three products, each aimed
at a different level of understanding of the data. WebSphere Information Analyzer
analyzes source data, discovering schema elements such as primary and foreign keys,
and checking adherence to integration and quality rules defined by the user; it
supports understanding the physical data. It provides detailed profiling of the data in
each column (cardinality, nullability, range, scale, length, precision, etc.). WebSphere

36 L. Haas

Understand:
• WebSphere Information Analyzer
• WebSphere Business Glossary
• Rational Data Architect

Standardize:
• Rational Data Architect
• WebSphere QualityStage

Specify:
• Rational Data Architect
• Each execution engine

Execute:
• WebSphere DataStage
• WebSphere Federation Server
• WebSphere Replication Server
• WebSphere Data Event Publisher

Operational platform:
• Connectors to databases, applications, and web sources
• WebSphere Metadata Server and Metadata Workbench
• WebSphere Information Services Director

Fig. 2. Individual products comprising IBM Information Server, listed by the integration task
they support. Additional products in the suite provide a common platform for the products
listed to run on. That platform includes connectivity to a broad range of sources, shared
metadata, and the ability to invoke the various products as services, from a range of different
programming environments.

Business Glossary lets the user define and manage a vocabulary for their enterprise,
and link the terms to the underlying data (providing business-level understanding). It
is designed for business users and subject-matter experts to define data standards and
record business terminology definitions, rules and taxonomies. It is useful both for
understanding and standardization in our framework.

IBM Rational Data Architect (RDA) is a full-function data modeling tool that can
be used with any database management system. RDA supports understanding of data
at the logical level. It allows the design and exploration of logical schemas, including
relationship discovery (i.e., finding foreign keys), and production of physical
schemas. RDA also incorporates the Clio [23] mapping capabilities, which are useful
in conjunction with an integration project. Thus, RDA also spans our understanding
and standardization tasks. In fact, from a mapping, RDA can generate out the artifacts
needed by the federation engine, hence it handles specification for federation as well.3

IIS includes WebSphere Metadata Server to capture the insight gained (and
standardization decisions made) in using these products and to make that knowledge
available to the other tools in the suite. Metadata Server provides a unified repository

3 In fact, it handles specification for any integration that can be done by an SQL engine today.

Incorporating additional Clio capabilities would give it the ability to also handle XML to
SQL, SQL to XML and XML to XML transformations.

 Beauty and the Beast: The Theory and Practice of Information Integration 37

for metadata access and analysis. It provides import and export to twenty common
modeling and business intelligence tools, as well as being leveraged by the products
of the IIS suite.

A key component of standardization is data cleansing, provided for IIS by
WebSphere QualityStage. QualityStage allows the user to set the formats for data
records, examine, correct and enrich data fields, and match and link records that may
represent the same object. The user can specify rules to determine which values
should “survive” merging of similar records. A graphic interface allows the user to set
up the rules for this cleansing in a dataflow design metaphor, and to tune the rules by
observing their impact on a dataset. The dataflow design metaphor of QualityStage is
also exploited by WebSphere DataStage, one of several products in the suite aimed at
execution. The same graphic interface allows the user to design complex
transformation logic visually, exploiting a large library of transforms (shared with
QualityStage). DataStage is used for materialization. It can be invoked in batch or
real-time, and can extract, transform and load vast volumes of information.

IIS also includes other integration engines, most notably WebSphere Federation
Server, which allows query access to heterogeneous data sources as if all the data
were in a single (virtual) database. Federation Server supports full SQL and
SQL/XML [45] access, with optimized query plans and materialized query tables for
caching data. It can be configured graphically using Rational Data Architect, or using
a Wizard in its own control center. Other integration engines include several
replication products, which allow synchronization of multiple copies of data. Each
product addresses a specific set of requirements. For example, one product focuses on
flexible scheduling, SQL-based transformation, and support for a variety of
configurations to handle typical business intelligence and application integration
scenarios, while another focuses on high throughput, low latency replication, for high
availability or workload distribution. The suite also provides event-publishing
capabilities (allowing database changes to be captured as XML messages and put on a
queue for an application to interpret). Event publishing is often used as a way of
integrating applications (by sending messages between them), and also as a way to
feed information to ETL engines to trigger a job. For example, using WebSphere
Event Publisher with WebSphere DataStage allows DataStage ETL jobs to be fed a
stream of data values to transform and load, so that it can integrate information in
real-time, driven by changes to the data, as opposed to batch processing.

This is a wide range of products, but even IIS is not sufficient for all integration
needs. In particular, while several of the products deal with both structured and
unstructured data, as a whole they offer more features to deal with structured datasets.
Hence, the various engines are increasingly interoperating with related IBM products
for content federation [46] and enterprise search and text analysis [47, 48].

This brief description is offered as an example of the types of products that exist
today. For each product mentioned, there are many competitive products that could be
substituted. Each typically has its own unique strengths. Further, a particular function
(e.g., finding relationships among data records) may be present in many products.
Different vendors will package functionality differently, depending on the strengths of
their products and the market niche they expect to address with them.

Looking back to the extended example from Section 2.2, Janet’s pain becomes
more concrete. Which products should she use for which steps in the integration? Will

38 L. Haas

Rational Data Architect and WebSphere Federation Edition provide better results than
WebSphere QualityStage and DataStage? How can she know that the products she
chooses will meet the application desiderata?

5 The “Big I” Challenge

Despite the many products available today, there are still many opportunities for
research in each of the basic functions needed. We don’t have an ultimate answer on
how to tell that two pieces of data refer to the same object, for example. We are still
learning how to automate schema integration. The wealth of research pointed to in
Section 3 shows how rich an area integration is for new discoveries.

However, in working with customers such as Janet over the last few years, we have
come to believe that there is a more global problem that needs to be addressed. The
issue that we see is that there is no theoretical – nor much practical – guidance for the
many Janets of the world on how to make these choices. This is problematic, because
the wrong choice can lead to bad results: orders of magnitude difference in
performance, lack of flexibility to accommodate changes in the company’s processes,
or just difficult, time-wasting implementations.

More concretely, what is wrong with today’s products, from the consumer
standpoint? There are too many, with too much functional overlap. (We have
described a relatively simple situation, in which they were all IBM products. In
general, the poor customer would be choosing from many products from many
different companies, much less compatible with each other than the IBM suite). Once
an integration approach is chosen, it is hard to switch; for example, the work done to
use federation today would have to be largely redone to move to a materialization
approach, as might be desired if the data were really massive or response time were
critical, for example. This is too bad, as federation is much better for rapid
prototyping to show the benefits of integration than materialization, which typically
requires months (and sometimes years) of effort before the benefits are visible. When
you consider that integration is an ongoing effort (new sources and new requirements
for information arrive constantly), flexibility becomes a major issue.

The products are also too hard to use together to support a complete integration
scenario. Most of the industrial-strength integration products available today have
many knobs that must be set to configure them to meet a particular set of
requirements. They are typically too focused on their own functionality and not on
smooth interoperability with other tools needed in the integration process. Hence, they
may be difficult or expensive to use in combination. The emergence of product suites
such as IIS as described above is a start at addressing this problem, but there is still
progress needed, especially when dealing with products from multiple vendors.

Ultimately, the time until the customer realizes value from the integration project
(and her investment in the tools) is too long, and the costs are too high. Because of the
complexity of these decisions, even for a simple case such as that in our example,
consulting engagements are frequently needed in even the best-staffed IT departments
in order to deliver a successful integration. Bringing in a specialist makes the project
more likely to succeed, but with high associated cost. It also adds another step to the
process – finding the right expert.

 Beauty and the Beast: The Theory and Practice of Information Integration 39

We need enormous advances in integration technology to get beyond these issues.
In an ideal world, integration would happen almost automatically. In this world, the
user would specify what information he wants, what he wants the result to look like,
and what properties he needs the result to have, and the system would “do it” (though
probably with user involvement at various points to verify key decisions, etc). This is
hardly a new vision. We are basically arguing for nonprocedural information access.
In a simpler time, relational databases were the answer to the same quest. The
difference is that in today’s world, the information needed for a new application is
likely to come from multiple heterogeneous sources.

More concretely, we would like to see the various integration execution engines
converge, so that, to the user, there is no visible difference between an ETL engine, a
replication engine, federation or even search in terms of the first three steps of the
integration process. Understanding, standardization and specification should be done
the same way, regardless. The execution will just happen, based on the solution
desiderata: the qualities of service desired, the constraints, and so on. The user might
be blissfully unaware of what execution engine (or engines) does the actual
integration under the covers.

To reach this information integration “nirvana”, a number of advances in
technology are needed. We must raise the level of abstraction significantly above
where it is today, where characteristics of individual products become primary
concerns for the integrator. A critical challenge is to represent all the information
needed for the task. Today, an important component of that information is found only
in the user’s head, or, in a well-disciplined IT department, perhaps in one or more
requirement documents. This is the information on the solution desiderata. Because it
is not available in a machine interpretable format, we have no way for an integration
tool to consider those requirements and hence, automate integration.

The level of abstraction needs to rise in other ways, as well. For example, it must
support logical or even business-level descriptions of what information is needed, as
opposed to concrete physically-linked descriptions such as column and table names,
or existing view definitions. Janet should be able to say she wants customer
information and the system should find and deliver it. That will require much richer
metadata than we have today, much of which will need to be derived automatically.
To support the rising level of abstraction, more sophisticated techniques are needed to
automate the various parts of the process, from discovery to entity resolution to
configuration and tuning.

There are challenges here for both the theoretical and the more systems-oriented
research communities. From the theoretical perspective, we lack a deep understanding
of what fundamental operations are needed to integrate information. While Bernstein
[22] has suggested a set of operations, we do not know if they are complete, nor do
we have precise semantics for them. Is there a unifying theory of integration that
subsumes the separate problems of data integration and data exchange? We have
posited that achieving our goal requires being able to represent the solution
desiderata. What role do these properties or characteristics of the result play, what
aspects can be represented and how? We need a model of these desiderata, and how
they relate to the integration task. We have wished for fully automatic integration.
How close to our goal can we possibly get?

40 L. Haas

From a systems research perspective, there are several approaches one might take
to this challenge. Perhaps the simplest is to start by building an “Integration Advisor”,
on the model of today’s physical design advisors [49, 50]. This tool would lead the
user through the various integration steps, asking for input on the desiderata, and then
recommend the appropriate engines, and perhaps even generate the configuration
information needed. This would simplify the integration process greatly. However,
there are still many issues to be addressed in creating this tool, such as what input
must the user provide, what really are the tradeoffs among the different integration
approaches, which desiderata matter, and so on. Another approach would be to start
with a language to express the integration desired (covering data plus desiderata), and
then build a system to interpret (or compile) that request against the tools and engines
on hand today. In other words, this approach would treat the current set of integration
engines as given, and the result of compilation would be a script that invoked one or
more of them to accomplish the integration. Alternatively, the system could compile
to a new engine with a complete set of operators for integration. In this last case, we
are returned to the questions of what is the model of information and what are the
basic operations that we posed above to the theory community, as presumably this
system would be the interpreter of some subset of those operations.

These are big challenges, and they hide a raft of further interesting problems. How
can we deal with uncertainty in a general way within the integration context? How
can we exploit the results of the discovery algorithms that are being developed to tell
us more about the data? Can we extend our theories of integration to include
uncertainty and newly produced knowledge? How much can we model, and how
much must we just make informed engineering choices?

We have focused in this paper on an information-centric view of integration. But in
fact, the most common form of integration today is still enterprise application
integration (EAI). Confronted with a myriad of choices of tools and techniques, many
customers fall back on the most popular alternative: writing a special-purpose
application, possibly exploiting some workflow or other process support tools. We
call this application-level, procedural style of integration process integration.
Integration at the application level is unfortunate, for several reasons. First, it is not
clear that writing a special-purpose application will be simpler even for an easy first
project as in our example. All of the initial hard work to understand the data and
standardize on an integrated representation will need to be done anyway, and an
integration approach chosen, i.e., whether to materialize, federate and/or search.
Without the use of at least some information integration tools, a lot of code will be
written to accomplish the integration [51]. Second, when the code for the integration
is in the application, it can only be optimized by the programmer, so performance will
be only as good as the programmer [52]. Third, it may be harder to reuse the work
done for this application when the next application over the same data or data sources
comes along.

We will never be able to stop programmers from writing code to do integration if
they want to do it. But we can ask how far we can and should go in terms of
simplification. What if we could not only relieve customers from deciding whether
ETL or federation was the answer, but also unify many of the basic tools that are used
in the application for integration (for example, business process integration, message
queuing, and so on)? Can we replace all the process integration and information

 Beauty and the Beast: The Theory and Practice of Information Integration 41

integration techniques with a single integration engine? This is what we refer to as
the “Big I” vision: a single engine for all integration needs, which takes a
nonprocedural specification of those needs and automatically chooses the right
approach or combination of approaches.

6 Conclusion

In this paper, we have presented a snapshot of the world of information integration as
it stands today. We have made great progress in both the theoretical foundations of
information integration and in the algorithms and tools that support it. Still,
information integration remains a daunting task. There are many improvements
needed: to the basic integration engines themselves, to the tools for understanding,
standardizing and specifying what is needed, and to the theory behind them. These
improvements will simplify certain aspects of the task, but they will not, by
themselves, eliminate the many choices that must be made by a talented expert today.
We therefore posed a challenge to the research community: can we move beyond the
individual techniques for integration to a fundamental understanding of what
integration is, and armed with that understanding, can we build a single integration
engine that automatically uses the right techniques for the right situation? We
hypothesized that the key to achieving this goal may lie in being able to represent and
reason about the full set of desiderata for the integrated system.

There is plenty of work to do, and many areas we could not touch on in this paper.
We focused on the problem of integration within the enterprise. In recent years, much
research has focused on the exciting world of data outside the enterprise, on the
worldwide web. Much of this work is applicable within the enterprise, though it
typically requires significant adaptation to work effectively with the constraints and
issues of that environment. More recently, research is emerging (again) on integration
of personal information, for example the information on your laptop [52]. New
challenges and techniques will doubtless be found in this environment as well.

Acknowledgments. I am grateful to my colleagues who have worked with me on
integration and related issues over the years at the IBM Almaden Research Center
(IBMers and visitors both), and to my many colleagues in IBM’s Information
Management division who introduced me to the real-world challenges. In particular, I
would like to thank Lee Scheffler and Mike Beckerle for many deep and stimulating
discussions on our shared vision of a simpler world of integration, which Lee
christened “the Big I”. Finally, I’d like to thank Phokion Kolaitis, Ron Fagin, and
Mike Beckerle for reading and improving earlier drafts of this work.

References

1. Jacob, K.J.: Betting on Brain Power. The Week. Feb 2, 2003. Available at http://www.the-
week.com/23feb02/biz2.htm

2. IBM Business Consulting Services: Your Turn, The Global CEO Study 2004. Available
from http://www.bitpipe.com/detail/RES/1129048329_469.html

3. Moore, C., Markham, R.: The Future of Content in the Enterprise. Forrester Report (2003)

42 L. Haas

4. Lenzerini, M.: Data Integration: A Theoretical Perspective. PODS (2002) 233-246
5. IEEE Data Eng. Bull. Special Issue on Structure Discovery, 26:3 (2003)
6. Barbará, D., DuMouchel W., Faloutsos, C., Haas, P. J., Hellerstein, J. M., Ioannidis, Y. E.,

Jagadish, H. V., Johnson, T., Ng, R. T., Poosala, V., Ross, K. A., Sevcik, K. C.: The New
Jersey Data Reduction Report. IEEE Data Eng. Bull. 20:4 (1997) 3-45

7. Ilyas, I. F., Markl, V., Haas, P. J., Brown, P., Aboulnaga, A.: CORDS: Automatic
Discovery of Correlations and Soft Functional Dependencies. SIGMOD (2004) 647-658

8. Doan, A., Ramakrishnan, R., Vaithyanathan, S.: Managing information extraction: state of
the art and research directions. SIGMOD (2006) 799-800

9. Gravano, L., García-Molina, H., Tomasic, A.: GlOSS: text-source discovery over the
Internet. ACM Transactions on Database Systems (TODS) 24:2 (1999) 229-264

10. Powell, A. L., French, J. C., Callan, J., Connell, M., Viles, C. L.: The impact of database
selection on distributed searching. SIGIR (2000) 232-239

11. Hernández, M. A., Stolfo, S. J.: Real-world Data is Dirty: Data Cleansing and The
Merge/Purge Problem. Data Min. Knowl. Discov. 2:1 (1998) 9-37

12. Johnson, T., Dasu, T.: Exploratory Data Mining and Data Cleaning. John Wiley (2003)
13. Koudas, N., Sarawagi, S., Srivastava, D.: Record Linkage: Similarity Measures and

Algorithms. SIGMOD (2006) 802-803
14. Lembo, D., Lenzerini, M., Rosati, R.: Source inconsistency and incompleteness in data

integration. KRDB (2002)
15. Bertossi, L. E., Chomicki, J.: Query Answering in Inconsistent Databases. Logics for

Emerging Applications of Databases (2003) 43-83
16. Naumann, F., Gertz, M., Madnick, S. E.: Proc. Information Quality (MIT IQ Conference),

Sponsored by Lockheed Martin, MIT, Cambridge, MA, USA (2005)
17. IEEE Data Eng. Bull. Special Issue on Probabilistic Data Management, 29:1 (2006)
18. Miller, R. J., Haas, L. M., Hernández, M. A.: Schema Mapping as Query Discovery.

VLDB (2000) 77-88
19. Rahm, E., Bernstein, P. A.: A survey of approaches to automatic schema matching. VLDB

J. 10:4 (2001) 334-350
20. Johnston, W. M., Hanna, J. P., Millar, R. J. Advances in dataflow programming languages.

ACM Comput. Surv. 36:1 (2004) 1-34
21. Rinderle, S., Reichert, M., Dadam, P.: Flexible Support of Team Processes by Adaptive

Workflow Systems. Distributed and Parallel Databases 16:1 (2004) 91-116
22. Bernstein, P.A.: Applying Model Management to Classical Meta Data Problems. Proc.

CIDR (2003) 209-220
23. Haas, L. M., Hernández, M. A., Ho, H., Popa, L., Roth, M.: Clio grows up: from research

prototype to industrial tool. SIGMOD (2005) 805-810
24. Shu, N. C., Housel, B. C., Taylor, R. W., Ghosh, S. P., Lum, V. Y.: EXPRESS: A Data

EXtraction, Processing, amd REStructuring System. ACM Trans. Database Syst. 2:2
(1977) 134-174

25. Breitbart, Y., Komondoor, R., Rastogi, R., Seshadri, S., Silberschatz, A.: Update
Propagation Protocols For Replicated Databases. SIGMOD (1999) 97-108

26. Kemme, B., Alonso, G.: A new approach to developing and implementing eager database
replication protocols. ACM Trans. Database Syst. 25:3(2000) 333-379

27. Dayal, U., Hwang, H.-Y.: View Definition and Generalization for Database Integration in
a Multidatabase System. IEEE Trans. Software Eng. 10:6 (1984) 628-645

28. Lohman, G. M., Daniels, D., Haas, L. M., Kistler, R., Selinger, P. G.: Optimization of
Nested Queries in a Distributed Relational Database. VLDB (1984) 403-415

 Beauty and the Beast: The Theory and Practice of Information Integration 43

29. Wiederhold, G. Mediators in the architecture of future information systems. IEEE
Computer 25:3 (1992) 38-49

30. Papakonstantinou, Y., Gupta, A., Haas, L. M.: Capabilities-Based Query Rewriting in
Mediator Systems. PDIS (1996) 170-181

31. Levy, A. Y., Rajaraman, A., Ordille, J. J.: Querying Heterogeneous Information Sources
Using Source Descriptions. VLDB (1996) 251-262

32. Roth, M. T., Schwarz, P. M., Haas, L. M.: An Architecture for Transparent Access to
Diverse Data Sources. In Dittrich, K. R., Geppert, A. (eds.): Component Database
Systems. Morgan Kaufmann Publishers (2001)175-206

33. Haas, L. M., Kossmann, D., Wimmers, E. L., Yang, J.: Optimizing Queries Across Diverse
Data Sources. VLDB (1997) 276-285

34. Fagin, R., Kolaitis, P. G., Miller, R. J., Popa, L.: Data exchange: semantics and query
answering. Theor. Comput. Sci. 336:1 (2005) 89-124

35. Kolaitis, P. G.: Schema mappings, data exchange, and metadata management. PODS
(2005) 61-75

36. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38:2
(2006)

37. Meng, W., Yu, C., Liu, K.: Building efficient and effective metasearch engines. ACM
Comput. Surv. 34:1 (2002) 48-89

38. Chang, K. C.-C., Cho, J.: Accessing the web: from search to integration. SIGMOD (2006)
804-805

39. Leser, U., Naumann, F., Eckman, B. A.: Data Integration in the Life Sciences (DILS
2006). Lecture Notes in Computer Science, Vol. 4075. Springer-Verlag, Berlin Heidelberg
New York (2006)

40. Buneman, P., Davidson, S. B., Hart, K., Overton, G. C., Wong, L.: A Data Transformation
System for Biological Data Sources. VLDB (1995) 158-169

41. Blake, J. A., Bult, C. J.: Beyond the data deluge: Data integration and bio-ontologies.
Journal of Biomedical Informatics 39:3 (2006) 314-320

42. http://www-306.ibm.com/software/data/integration/
43. http://www.informatica.com/
44. http://www-306.ibm.com/software/data/integration/info_server/overview.html
45. ISO/IEC 9075-14:2003 Information technology -- Database languages -- SQL -- Part 14:

XML-Related Specifications (SQL/XML). International Organization for Standardization
(2003)

46. http://www-306.ibm.com/software/data/integration/db2ii/editions_content.html
47. http://www-306.ibm.com/software/data/integration/db2ii/editions_womnifind.html
48. Ferrucci, D., Lally, A.: UIMA: an architectural approach to unstructured information

processing in the corporate research environment. Natural Language Engineering 10:3-4
Cambridge University Press, New York (2004) 327-348

49. Zilio, D. C., Rao, J., Lightstone, S., Lohman, G. M., Storm, A., Garcia-Arellano, C.,
Fadden, S.: DB2 Design Advisor: Integrated Automatic Physical Database Design. VLDB
(2004) 1087-1097

50. Agrawal, S., Chaudhuri, S., Kollár, L., Marathe, A. P., Narasayya, V. R., Syamala, M.:
Database Tuning Advisor for Microsoft SQL Server 2005. VLDB (2004) 1110-1121

51. Saracco, C., Englert S., Gebert, I.: Using DB2 Information Integrator for J2EE
Development: A Cost/Benefit Analysis. May 2003. On IBM Developerworks, available
at www.ibm.com/developerworks/db2/library/techarticle/0305saracco1/0305saracco1.html

52. Halevy, A. Y., Franklin, M. J., Maier, D.: Principles of dataspace systems. PODS (2006)
1-9

	Introduction
	Information Integration Illustrated
	The Information Integration Process
	An Extended Example

	Research in Information Integration
	The State of Information Integration in Practice
	The “Big I” Challenge
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

