
Clio Grows Up: From Research Prototype to Industrial Tool

Laura M. Haas
IBM Silicon Valley Labs
laura@almaden.ibm.com

Mauricio A. Hernández
IBM Almaden Research Center
mauricio@almaden.ibm.com

Howard Ho
IBM Almaden Research Center

ho@almaden.ibm.com

Lucian Popa
IBM Almaden Research Center

lucian@almaden.ibm.com

Mary Roth
IBM Silicon Valley Labs

torkroth@us.ibm.com

ABSTRACT
Clio, the IBM Research system for expressing declarative schema
mappings, has progressed in the past few years from a research pro-
totype into a technology that is behind some of IBM’s mappingtech-
nology. Clio provides a declarative way of specifying schema map-
pings between either XML or relational schemas. Mappings are
compiled into an abstract query graph representation that captures
the transformation semantics of the mappings. The query graph can
then be serialized into different query languages, depending on the
kind of schemas and systems involved in the mapping. Clio currently
produces XQuery, XSLT, SQL, and SQL/XML queries. In this pa-
per, we revisit the architecture and algorithms behind Clio. We then
discuss some implementation issues, optimizations neededfor scal-
ability, and general lessons learned in the road towards creating an
industrial-strength tool.

1. INTRODUCTION
Mappings between different representations of data are fundamen-

tal for applications that require data interoperability, that is, integra-
tion and exchange of data residing at multiple sites, in different for-
mats (or schemas), and even under different data models (such as
relational or XML). To provide interoperability, information integra-
tion systems must be able to understand and translate between the
various ways in which data is structured. With the advent of the
flexible XML format, the abundance of different schemas describing
similar or related data has proliferated even more.

We can distinguish between two main forms of data interoperabil-
ity. Data exchange(or data translation) is the task of restructur-
ing data from a source format (or schema) into a target format(or
schema). This is not a new problem; the first systems supporting
the restructuring and translation of data were built several decades
ago. An early such system was EXPRESS [9], which performed
data exchange between hierarchical schemas. However, the need for
systems supporting data exchange has persisted and, in fact, grew
larger over the years. Data exchange requirements appear inthe ETL
(extract-transform-load) workflows, used to populate a data ware-
house from a set of data sources, in XML messaging, in schema evo-
lution (when migrating data from an old version to a new version), in
database restructuring, etc. A second form of data interoperability is
data integration(or federation), which means the ability to query a
set of heterogeneous data sources via a virtual unified target schema.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06$5.00.

There is no need to materialize a target instance in this case; instead,
the emphasis is on query processing.

In both cases, of data exchange and data integration, relationships
or mappings must first be established between the source schema(s)
and the target schema. There are two complementary levels atwhich
mappings between schemas can be established, and both pose chal-
lenges. The first is mostly a syntactic one: by employingschema
matchingtechniques, a set of uninterpretedcorrespondencesbetween
elements (terms, field names, etc.) in two different schemasare es-
tablished. A significant body of work on schema matching algo-
rithms has been developed (see [8] for a survey). The second level
at which mappings can be established is a more operational one, that
can relateinstancesover the source schema(s) withinstancesover the
target schema. Establishing an “operational” mapping is necessary if
one needs to move actual data from a source to a target, or to answer
queries. Such “operational” mappings can be seen as interpretations
(with runtime consequences) of the correspondences that result after
schema matching. It is this second view on schema mappings that we
focus on here, and we will use the term schema mappings to mean
“operational” mappings rather than correspondences.

Schema mappings in various logical forms have been used for
query answering in data integration (see [4] for a survey). Schema
mappings expressed as constraints (source-to-target tgds) have been
used to formalize data exchange between relational schemas[3]. Sim-
ilar schema mappings appear as an important component of themodel
management framework of Bernstein et al [1, 5].

The system that we are about to describe,Clio, is the first to ad-
dress the problem of semi-automatic generation of schema mappings
as well as the subsequent problem of using the schema mappings
for the actual runtime (e.g., how to generate an XQuery or XSLT
transformation from the schema mappings to implement the data ex-
change). Originally designed for the relational case [6], Clio has then
evolved into a full-fledged system [7] for generating mappings and
transformations between hierarchical XML schemas. In thispaper,
we describe our further experience in building an industrial-strength
Clio; in particular, we focus on the practical challenges encountered
in: (1) the scalable semi-automatic generation of mappingsbetween
schemas with large degree of complexity, and (2) the subsequent use
of these schema mappings to accomplish efficient and functional data
exchange, via query generation.
Clio system architecture. A pictorial view that shows how Clio is
structured into its main components is shown in Figure 1. At the core
of the system are themapping generationcomponent and thequery
generationcomponent. The mapping generation component takes as
input correspondences between the source and the target schemas and
generates a schema mapping consisting of aset of logical mappings
that provide an interpretation of the given correspondences. The logi-
cal mappings are declarative assertions (expressed as source-to-target
constraints, to be described shortly). They can be viewed asabstrac-
tions (or requirements) for the more complexphysical transforma-
tions (e.g., SQL, XQuery or XSLT scripts) that operate at thedata

805

Schema mappingSource
schema S

Target
schema T

Correspondences

“conforms to”

data

Query
Generation

Executable transformation
(SQL/XQuery/XSLT/…)

“conforms to”

• XML Schema
• Relational

Mapping
Generation

SQL XQuery XSLT…

Schema
Matching

GUI

• XML Schema
• Relational

Figure 1: Clio architecture

transformation runtime. Such abstractions are easier to understand
and to reason about, and are independent of any physical transforma-
tion language. Nonetheless, they capture most of the information that
is needed to generate the physical artifacts automatically. The query
generation component has then the role to convert a set of logical
mappings into an executable transformation script. Query generation
consists of a generic module, independent of a particular execution
language, and of a number of pluggable components that are specific
to each execution language: SQL, SQL/XML, XQuery and XSLT.
At any time during the design, a user can interact with the system
through aGUI component. The user can view, add and remove cor-
respondences between the schemas, can attach transformation func-
tions to such correspondences, can inspect and edit (in a controlled
way) the generated logical mappings, and can inspect (without edit-
ing) the generated transformation script. Finally, correspondences
can also be generated via an optionalschema matchingcomponent.
Clio can interact with any schema matcher and also has its ownbuilt-
in schema matching algorithm. However, in this paper, we will focus
on the rest of the components, which are specific to Clio.

2. MAPPING AND QUERY GENERATION
Figure 2 illustrates an actual Clio screenshot showing portions of

two gene expression schemas and correspondences between these
schemas. We will use this as a running example to illustrate the
concepts, the algorithms, as well as the challenges that we faced in
designing the mapping and query generation components.

The left-hand (source) schema, GENEX, is a relational schema for
gene expression (microarray) data stored in the GeneX database1. It
is a schema of medium complexity; it consists of 63 tables that are
inter-related via key and foreign key constraints (there are 47 foreign
key constraints that encode the relationships between tables). The
right-hand (target) schema is an XML schema (GeneXML, formerly
GEML) intended for the exchange (with other databases) of gene
expression data. In addition to a structural change to a hierarchical
format, this schema also presents changes in the concrete elements
and attributes (some of the source GENEX elements do not havecor-
respondences in GeneXML and vice-versa). The XML schema is
24KB in size, including 286 elements and attributes. The number
of foreign keys (keyref) is much reduced compared to the relational
GENEX schema, since many of the original foreign keys are now
replaced by hierarchical parent-child relationships.

For illustration purposes, in this section we only describethe process
of mapping data about experiment sets and about the factors and
treatments that were applied to each experiment set. Thus, we ignore
a large portion of the two schemas and focus only on the relevant
tables and XML structures (shown in Figure 2). To generate a com-
plete transformation, the remainders of the schemas (e.g. samples,
array measurements, citations, software, etc.) will also have to be

1http://sourceforge.net/projects/genex

Figure 2: Schemas and correspondences in Clio.

matched; additional mappings will then be generated and thefinal
result will be materialized into a complete transformationscript. In
Section 3 we give further details on the complexity and challenges of
generating a large-scale transformation.
Schemas in ClioThe first step in Clio is loading and transforming the
schemas into an internal representation. The model that we adopt for
this purpose is a nested relational model, that is suitable for describ-
ing relational tables as well as the XML hierarchy. In its basic form,
the nested relational model consists of several fundamental types:
set, record and choice types, together with atomic (primitive) types.
For example,GEML in Figure 2 is represented as a record type and its
repeatable elementexp set is represented via a set type. In addi-
tion to this basic nested relational model, Clio’s implementation of a
schema loader includes a series of add-on features to capture the in-
tricacies of XML Schema: data fields to remember whether a record
component corresponds to an element or an attribute and whether
the component is optional or nillable, various encodings todeal with
mixed content elements, derived types, type variables (used, in par-
ticular, to encode recursive types), etc.

2.1 Mapping Generation
The main idea of the algorithm [7] is to put correspondences in

groups (not necessarily disjoint) based on how their end-points (source,
respectively, target) relate to each other in the schemas. Thus, for any
two relatedelements in the source schema, for which there exist cor-
respondences into tworelatedelements in the target schema, there
will be a group (and, subsequently, a mapping) that includesthose
correspondences (and possibly more). As an example,FACTOR NAME
andBIOLOGY DESC are related in the source because there is a for-
eign key that links theEXPERIMENTFACTOR table to theEXPERIM-
ENTSET table); furthermore,biology desc andfactor name
are related in the target because the latter is a child of the former.
Hence, there will be a mapping that maps related instances ofBIOLO-
GY DESC andFACTOR NAME (and possibly more) into related in-
stances ofbiology desc andfactor name (and possibly more).
Generation of tableauxThe first step of the algorithm is to generate
all the basic ways in which elements relate to each other within one
schema, based on the schema structure and constraints. Thisgenera-
tion step (described in [7] in detail) considers each set-type element
in a nested schema as a direct generalization of the concept of a table
in a relational schema; it then joins to each such set-type element all

806

S1 = ExpSet
S2 = ExpFactor ������������ExpSet
S3 = TreatmentLevel ������������ExpSet
S4 = TL_FactorValue ��	�����	���TreatmentLevel ⋈�����������ExpSet������������ExpFactor ������������ExpSet

T1 = GEML/exp_set
T2 = GEML/exp_set/…/exp_factor
T3 = GEML/exp_set/…/treatment
T4 = GEML/exp_set/ { …/treatment/…/treat_factor ⋈
���������� …/exp_factor }

Figure 3: Source and target tableaux (informal notation).

the other set-type elements that can be reached by followingforeign
key (keyref) constraints (a process called thechase). The result is a
set oftableaux2, one set in each schema.

In Figure 3 we show several of the source and target tableaux
that are generated for our example. (For brevity, we sometimes use
ExpSet instead ofEXPERIMENTSET; similar abbreviations are also
used for the other tables.) For the source schema,ExpSet forms a
tableau by itself, becauseExpSet is a top-level table (there are no
outgoing foreign keys). In contrast,ExpFactor does not form a
tableau by itself but needsExpSet into which it has a foreign key. A
more complicated tableau isS4 that is constructed forTL FactorVa-
lue. Each factor value is associated to one treatment level (thus, the
foreign key intoTreatmentLevel) and each treatment level cor-
responds to one experiment set (thus, the foreign key intoExpSet).
However, a factor value is also an experiment factor (thus, the foreign
key intoExpFactor), and each experiment factor is associated to
an experiment set (hence, the second occurrence ofExpSet).

The above tableauS4 illustrates the complexity that can arise even
when a relatively small number of tables is involved. An additional
constraint (which is true for the actual data) could be used to infer
that the two occurrences ofExpSet correspond to the same exper-
iment set instance. Clio’s chasing engine includes such an inference
mechanism. However, such a constraint is hard to extract in practice
(it is not a key, but a complicated dependency). The price to pay for
not having such a constraint will be further ambiguity that remains to
be solved during mapping generation (to be described shortly).

For the target schema, the tableaux are more complex, due to nest-
ing and also to the fact that predicates (such as join conditions) can
have a context. While tableauxT1, T2 andT3 are straight paths to
set-type elements (e.g.,exp factor), the tableauT4, intended to
denote the collection of treatment factorstreat factor, also con-
tains a join withexp factor. Moreover, the join is relative to a
given instance ofexp set. The reason for this is the existence of
a keyref constraint that associates everytreat factor element
with anexp factor element, within thesameexp set instance.
Such keyref constraints, part of the XML Schema specification, can
be easily specified by putting the constraint on the correct element in
the hierarchy (exp set instead of the root, for this example).

To represent tableaux such asT4 andS4 unambiguously, Clio uses
an internal notation based on: (1) generators, which are used to bind
variables to individual elements in sets, and (2) conditions. Path ex-
pressions, which can be absolute or relative to the bound variables,
can appear in both the generators and the conditions. As an example,
the internal form ofT4 is shown below.

Generators:
t0 ∈ GEML/exp set,t1 ∈ t0/exp setheader/treatmentlist/treatment,
t2 ∈ t1/treat factor list/treat factor,
t3 ∈ t0/exp set header/expfactor list/exp factor ;

Conditions:
t2/factor id = t3/id

The use of collection-bound variables (rather than that of arbi-
trarily bound variables) has the advantage that the resulting notation
2also calledlogical relations in [7]. However, the termtableaux,
used in classical papers on the chase, was the one widely usedduring
the development of Clio. Hence, we stand by it here.

1. m1: ∀ s0 ∈ /ExpFactor, s1 ∈ /ExpSet wheres0/es_fk = s1/es_pk
2. ∃ t0 ∈ /GEML/exp_set, t1 ∈ t0/exp_set_header/exp_factor_list/exp_factor
3. such that s1/LOCAL_ACCESSION = t0 /@local_accession ∧
4. s1/NAME = t0/@name ∧ s1/ES_PK = t0/@id ∧
5. s1/RELEASE_DATE = t0/@release_date∧
6. s1/ANALYSIS_DESC = t0/exp_set_header/analysis_desc∧

…
1. m3: ∀ s0 ∈ /TL_FactorValue, s1 ∈ /TreatmentLevel, s2 ∈ /ExpSet,
2. s3 ∈ /ExpFactor, s4 ∈ /ExpSet,
3. wheres0/tl_fk = s1/tl_pk ∧ s1/es_fk = s2/es_pk ∧
4. s0/ef_fk = s3/ef_pk ∧ s3/es_fk = s4/es_pk
5. ∃ t0 ∈ /GEML/exp_set, t1 ∈ t0/exp_set_header/treatment_list/treatment,
6. t2 ∈ t1/treat_factor_list/treat_factor, t3 ∈ t0/exp_set_header/exp_factor_list/exp_factor
7. wheret2/factor_id = t3/id
8. such that …

Figure 4: Two logical mappings.

maps easily toefficient iteration patterns (e.g., the from clause of
SQL, or the for loops of XQuery/XSLT).
Generation of logical mappingsThe second step of the mapping
generation algorithm is the generation of logical mappings. (Recall
that a schema mapping is a set of logical mappings.) The basicalgo-
rithm in [7] pairs all the existing tableaux in the source with all the
existing tableaux in the target, and then finds the correspondences
that are covered by each pair. If there are such correspondences, then
the given pair of tableaux is a candidate of a logical mapping. (In
Section 3 we describe an additional filtering that takes place before
such a candidate is actually output to a user.)

In Figure 4 we show two of the resulting logical mappings, forour
example. The mappingm1 is obtained from the pair(S2, T2), which
is covered by 10 correspondences. The source tableau is encoded in
the∀ clause (with its associated whereclause that stores the condi-
tions). A similar encoding happens for the target tableau, except that
an∃ clause is used instead of∀. Finally, the such thatclause encodes
all the correspondences between the source and the target that are
covered. (Only five of them are shown in the figure.)

A more complex mapping ism3 that is obtained from the pair
(S4, T4), which is covered by all the correspondences shown in Fig-
ure 2. An additional complication in generating this mapping arises
from the fact that the correspondences that mapEXPERIMENTSET
columns toexp set elements/attributes have multiple interpreta-
tions, because each correspondence can match either the first occur-
rence or the second occurrence ofExpSet in S4. This ambiguity
is resolved by generating all possible interpretations (e.g., all these
correspondences match the first occurrence ofExpSet, or all match
the second occurrence, or some match the first occurrence andsome
match the second occurrence). A user would then have to go through
all these choices and select the desired semantics. The default choice
that we provide is the one in which all the ambiguous correspon-
dences match the first choice (e.g., the first occurrence ofExpSet).
For this example, all the different interpretations are in fact equiv-
alent, since the two occurrences ofExpSet represent the same in-
stance, due to the constraint discussed earlier.

In Clio, the tableaux that are constructed based on chasing form
only the basic (default) way of constructing mappings. Users have
the option of creating additional mappings through the mapping edi-
tor. In each schema, a new tableau can be specified by selecting the
needed collections and then creating predicates on those collections.
Each such tableau can then participate in the algorithm for mapping
generation. In other words, each tableau will be paired withall the
tableaux in the opposite schema to reach all possible mappings, based
on covered correspondences.
Mapping languageTo the language that we have just described, we
must add an additional construct:Skolem functions. These functions
can explicitly represent target elements for which no source value is
given. For example, the mappingm1 of Figure 4 will not specify
a value for the@id attribute underexp factor (because there is
no correspondence to map into@id). To create a unique value for
this attribute, which is required by the target schema, a Skolem func-

807

1. for $x0 in $doc0/GENEX/EXPERIMENTFACTOR,
2. $x1 in $doc0/GENEX/EXPERIMENTSET
3. where
4. $x1/ES_PK/text() = $x0/ES_FK/text()
5. return
6. <exp_set>
7. { attribute id { $x1/ES_PK } }
8. { attribute name { $x1/NAME } }
9. { attribute local_accession { $x1/LOCAL_ACCESSION } }
10. { attribute release_date { $x1/RELEASE_DATE } }
11. <exp_set_header>
12. <biology_desc> { $x1/BIOLOGY_DESC/text() } </biology_desc>
13. <analysis_desc> { $x1/ANALYSIS_DESC/text() } </analysis_desc>
14. <exp_factors_list> {
15 for $x0L1 IN $doc0/GENEX/EXPERIMENTFACTOR,
16. $x1L1 IN $doc0/GENEX/EXPERIMENTSET
17. where
18. $x1L1/ES_PK/text() = $x0L1/ES_FK/text() and
19. $x1/BIOLOGY_DESC/text() = $x1L1/BIOLOGY_DESC/text() and
20. $x1/ANALYSIS_DESC/text() = $x1L1/ANALYSIS_DESC/text() and
21. $x1/NAME/text() = $x1L1/NAME/text() and
22. $x1/LOCAL_ACCESSION/text() = $x1L1/LOCAL_ACCESSION/text() and
23. $x1/RELEASE_DATE/text() = $x1L1/RELEASE_DATE/text()
24. return
25. <exp_factor>
26. { attribute factor_name { $x0L1/FACTOR_NAME } }
27. { attribute factor_units { $x0L1/FACTOR_UNITS } }
28. { attribute major_category { $x0L1/MAJOR_CATEGORY } }
29. { attribute minor_category { $x0L1/MINOR_CATEGORY } }
30. <id>

{"SK6(",$x1L1/BIOLOGY_DESC/text(),$x1L1/ANALYSIS_DESC/text(),…}</id>
31. </exp_factor>
32. } </exp_factors_list>
33. </exp_set_header>
34. </exp_set>

Figure 5: XQuery fragment for one of the logical mappings.

tion can be generated (and the siblings and ancestors of@id, such as
factor name andbiology desc, which contain a source value,
will appear as arguments of the function). In general, the gener-
ation of Skolem functions could be postponed until query genera-
tion (see Section 2.2) and the schema mapping language itself could
avoid Skolem functions. However, to be able to express mappings
that arise frommapping composition(e.g., a mapping that is equiva-
lent to the sequence of two consecutive schema mappings), functions
mustbe part of the language [2]. Clio has been recently extended
to support mapping composition, an important feature of metadata
management. Hence, the schema mapping language used in Clioin-
cludes Skolem functions; the resulting language is a nestedrelational
variation of the language of second-order tgds of Fagin et al[2].

2.2 Query Generation
Our basic query generation operates as follows. Each logical map-

ping is compiled into a query graph that encodes how each target
element/attribute is populated from the source-side data.For each
logical mapping, query generators walk the relevant part ofthe target
schema and create the necessary join and grouping conditions. The
query graph also includes information on what source data-values
each target element/attribute depends on. This is used to generate
unique values for required target elements as well as for grouping.
In Figure 5, we show the XQuery fragment that produces the target
<exp set> elements as prescribed by logical mappingm1

3. The
query graph encodes that an<exp set> element will be generated
for every tuple produced by the join of the source tablesEXPERIMENT-
FACTOR andEXPERIMENTSET (see lines 1–2 inm1). Lines 1–4 in
Figure 5 implement this join. Lines 7–10 output the attributes within
exp set and implement lines 3–5 ofm1. Then, we need to pro-
duce the repeatableexp factor elements. The query graph pre-
scribes two things aboutexp factor: 1) that it will be generated
for every tuple that results from the join ofEXPERIMENTFACTOR
andEXPERIMENTSET (lines 15–18 in the query – they are the same

3The complete XQuery is the concatenation of all the fragments that
correspond to all the logical mappings.

as 1–4 except for the variable renaming), and, 2) since it appears
nested withinexp set, that such tuples join with the current tuple
from the outer part of the query to create the proper grouping(lines
19–23 – requiring that the values forexp set in the inner tuple be
the same as in the outer tuple). The grouping condition in lines 19–23
does not appear anywhere in logical mappingm1. This is computed
in the query graph when the shape of the target schema is takeninto
consideration. Finally, lines 25–31 produce an actualexp factor
element. Of particular interest, line 30 creates a value fortheid el-
ement. No correspondence exists for theid element and, thus, there
is no value for it inm1. However, sinceid is a requiredtarget ele-
ment, the query generator produces a Skolem value forid based on
the dependency information stored in the query graph.

3. PRACTICAL CHALLENGES
In this section, we present several of the implementation and op-

timization techniques that we developed in order to addresssome of
the many challenging issues in mapping and query generation.

3.1 Scalable Incremental Mapping Generation
One of the features of the basic mapping generation algorithm

is that it enumerates a priori all possible “skeletons” of mappings,
that is, pairs of source and target tableaux. In a second phase (in-
sertion/deletion of correspondences), mappings are generated, based
on the precomputed tableaux, as correspondences are added in or
removed. This second phase must beincrementalin that, after the
insertion of a correspondence (or of a batch of correspondences) or
after the removal of a correspondence, a new mapping state must be
efficiently computed based on the previous mapping state. This is an
important requirement since one of the main uses of Clio is interac-
tive mapping generation and editing. To achieve this, the main data
structure in Clio (the mapping state) is thelist of skeletons, where
a skeleton is a pair of tableaux (source and target) togetherwith all
the inserted correspondences that match the given pair of tableaux.
When correspondences are inserted or deleted, the relevantskeletons
are updated. Furthermore, at any given state, only a subset of all
the skeletons is used to generate mappings. The other skeletons are
deemedredundant(although they could become non-redundant as
more correspondences are added4). This redundancy check, which
we describe next, can significantly reduce the amount of irrelevant
mappings that a user has to go through.
Redundancy checkA tableauT1 is a sub-tableauof a tableauT2

if there is a one-to-one mapping of the variables ofT1 into the vari-
ables ofT2, so that all the generators and all the conditions ofT1

become respective subsets of the generators and conditionsof T2. A
pair (Si, Tj) of source and target tableaux is asub-skeletonof a sim-
ilar pair (S′

i, T
′

j) if Si is a sub-tableau ofS′

i andTj is a sub-tableau
of T ′

j . The sub-tableaux relationships in each of the two schemas
as well as the resulting sub-skeleton relationship are alsoprecom-
puted in the first phase, to speed up the subsequent processing that
occurs in the second phase. When correspondences are added,in
the second phase, if(Si, Tj) is a sub-skeleton of(S′

i, T
′

j) and the
setC of correspondences covered by(S′

i, T
′

j) is thesameas the set
of correspondences covered by(Si, Tj), then the mapping based on
(S′

i, T
′

j) andC is redundant. Intuitively, we do not want to use large
tableaux unless more correspondences will be covered. For exam-
ple, suppose that we have inserted only two correspondences, from
BIOLOGY DESC andANALYSIS DESC of EXPERIMENTSET to
biology desc and analysis desc underexp set. These
two correspondences match on the skeleton(S2, T2) whereS2 and
T2 are the tableaux in Figure 3 involving experiment sets and ex-
periment factors. However, this skeleton and the resultingmapping
are redundant, because there is a sub-skeleton(S1, T1) that covers

4And vice-versa, non-redundant skeletons can become redundant as
correspondences are removed.

808

the same correspondences, whereS1 andT1 are the tableaux in Fig-
ure 3 involving experiment sets. Until a correspondence that maps
EXPERIMENTFACTOR is added, there is no need to generate a logi-
cal mapping that involvesEXPERIMENTFACTOR.
The hybrid algorithm The separation of mapping generation into
the two phases (precomputation of tableaux and then insertion of cor-
respondences) has one major advantage: when correspondences are
added, no time is spent on finding associations between the elements
being mapped. All the basic associations are already computed and
encoded in the tableaux; the correspondences are just matched on
the relevant skeletons, thus speeding up the user addition of corre-
spondences in the GUI. There is also a downside: when schemasare
large, the number of tableaux can also become large. The number of
skeletons (which is the product of the numbers of source and,respec-
tively, target tableaux) is even larger. A significant amount of time
is then spent in the preprocessing phase to compute the tableaux and
skeletons as well as the sub-tableaux and sub-skeleton relationships.
A large amount of memory may be needed to hold all the data struc-
tures. Moreover, some of the skeletons may not be needed (or at least
not until some correspondence is added that matches them).

A more scalable solution, which significantly speeds up the initial
process of loading schemas and precomputing tableaux, without sig-
nificantly slowing down the interactive process of adding and remov-
ing correspondences, is thehybrid algorithm. The main idea behind
this algorithm is to precompute only a bounded number of source
tableaux and target tableaux (up to a certain threshold, such as 100
tableaux in each schema). We give priority to the top tableaux (i.e.,
tableaux that include top-level set-type elements withoutincluding
the more deeply nested set-type element). When a user interacts with
the Clio GUI, she would usually start by browsing the schemasfrom
the top and, hence, by adding top-level correspondences, that will
match the precomputed skeletons.

However, correspondences between elements that are deeperin the
schema trees may fail to match on any of the precomputed skeletons.
We then generate, on the fly, the needed tableaux based on the end-
points of such a correspondence. Essentially, we generate asource
tableau that includes all the set-type elements that are ancestors of the
source element in the correspondence (and similarly for thetarget).
The tableaux are then closed under the chase, thus includingall the
other schema elements that are associated via foreign keys.Next, the
data structures holding the sub-tableaux and the sub-skeleton rela-
tionships are updated, incrementally, now that the tableaux and a new
skeleton have been added. The new correspondence will then match
the newly generated skeleton, and a new mapping can be generated.
Overall, the performance of adding a correspondence takes ahit, but
the amount of tableaux computation is limited locally (surrounding
the end-points) and is usually quite acceptable. As a drawback, the
algorithm may lose itscompleteness, in that there may be certain
associations between schema elements that will no longer beconsid-
ered (they would appear if we were to compute all the tableauxas in
the basic algorithm). Still, this is a small price to pay, compared to
the ability to load and map (at least partially) two complex schemas.
Performance evaluation: mapping MAGE-ML We now give an
idea of the effectiveness of the hybrid generation algorithm by illus-
trating it on a mapping scenario that is close to worst case inpractice.
We load the same complex XML schema on both sides and experi-
ment with the creation of the identity mapping. The schema that we
consider is the MAGE-ML schema5, intended to provide a standard
for the representation of microarray expression data that would facil-
itate the exchange of microarray information between different data
systems. MAGE-ML is a complex XML schema: it features many
recursive types, contains 422 complex type definitions and 1515 ele-
ments and attributes, and is 172KB in size.

We perform two experiments. In the first one, we control the
nesting level of the precomputed tableaux (maximum 6 nestedlev-

5http://www.mged.org/Workgroups/MAGE/mage.html

els of sets), but we set no limit on the total number of precomputed
tableaux, when loading a schema. This experiment gives us a lower
bound estimation on the amount of time and memory that the basic
algorithm (that precomputes all the tableaux) requires. Inthe second
experiment, we control the nesting level of the precomputedtableaux
(also, maximum 6)and the total number of precomputed tableaux
(maximum 110 per schema). This experiment shows the actual im-
provement that the hybrid algorithm achieves.

For the first experiment, we looked at the time to load the MAGE-
ML schema on one side only (as source). This includes precomput-
ing the tableaux as well as the sub-tableaux relationship. (The time
to compile, in its entirety, the types of MAGE-ML, into the nested re-
lational model poses no problem; it is less than 1 second.) Wewere
able to precompute all (1030) the tableaux that obey the nesting level
limit, in about 2.6 seconds. However, computing the sub-tableaux re-
lationship (checking all pairs of the 1030 tableaux for the sub-tableau
relationship) takes 74 seconds. The total amount of memory to hold
the necessary data structures is 335MB. Finally, loading the MAGE-
ML schema on the target side causes the system to run out of memory
(512MB were allocated).

For the second experiment, we also start by loading the MAGE-
ML schema on the source side. The precomputation of the tableaux
(116 now) takes 0.5 seconds. Computing the sub-tableaux relation-
ship (checking all pairs of the 116 tableaux to record if one is a sub-
tableau of another) takes 0.7 seconds. The total amount of mem-
ory to hold the necessary data structures is 163MB. We were then
able to load the MAGE-ML schema on the target side in time thatis
similar to that of loading the schema on the source side. The sub-
sequent computation of the sub-skeleton relationship (checking all
pairs of the 13456 = 116 x 116 skeletons to record whether one is a
sub-skeleton of another) takes 35 seconds. The amount of memory
needed to hold everything at this point is 251MB. We then measured
the performance of adding correspondences. Adding a correspon-
dence for which there are precomputed matching skeletons is0.2
seconds. (This includes the time to match and the time to recompute
the affected logical mappings.) Removing a correspondencerequires
less time. Adding a correspondence for which no precomputedskele-
ton matches and for which new tableaux and a new skeleton mustbe
computed on the fly takes about 1.3 seconds. (This also includes the
time to incrementally recompute the sub-tableaux and sub-skeleton
relationships.) Overall, we found the performance of the hybrid al-
gorithm to be quite acceptable and we were able to easily generate
30 of the (many!) logical mappings. Generating the executable script
(query) that implements the logical mappings takes, additionally, a
few seconds. To give a feel of the complexity of the MAGE-ML
transformation, the executable script corresponding to the 30 logical
mappings is 25KB (in XQuery) and 131KB (in XSLT).

The Clio implementation is in Java and the experiments were run
on a 1600MHz Pentium processor with 1GB main memory.

3.2 Query Generation: Deep Union
There are two major drawbacks that the query generation algo-

rithm described in Section 2.2 suffers from: there is no duplicate
removal within and among query fragments, and there is no group-
ing of data among query fragments. For instance, suppose we are
trying to create a list of orders with a list of items nested inside. As-
sume the input data comes from a simple relational tableOrders
(OrderID,ItemID). If the input data looks like{(o1,i1), (o1,i2)},
our nested query solution produces the following output data: {(o1,(i1,
i2)), (o1,(i1,i2))}. The grouping of items within each order is what
the user expected, but users may reasonably expect that onlyone in-
stance ofo1 appears in the result. Even if we eliminate duplicates
from the result of one query fragment, our mapping could result in
multiple query fragments, each producing duplicates or extra infor-
mation that needs to be merged with the result of another fragment.
For example, assume that a second query fragment produces a tuple

809

WITH
ExpSetFlatAS -- Q1: The join and union of the relational data for ExpSet
(SELECT DISTINCT

x1.BIOLOGY_DESC AS exp_set_exp_set_header_biology_desc,
x1.ANALYSIS_DESC AS exp_set_exp_set_header_analysis_desc,
x0.ES_FK AS exp_set_id,
…
VARCHAR('Sk_GEML_2(' || x1.BIOLOGY_DESC || x1.ANALYSIS_DESC || … || ')') AS ClioSet0,
VARCHAR('Sk_GEML_3(' || x1.BIOLOGY_DESC || x1.ANALYSIS_DESC || … || ')') AS ClioSet1

FROM GENEX.EXPERIMENTFACTOR x0, GENEX.EXPERIMENTSET x1
WHERE x0.ES_FK = x1.ES_PK

UNION
SELECT DISTINCT
x1.BIOLOGY_DESC AS exp_set_exp_set_header_biology_desc,
x1.ANALYSIS_DESC AS exp_set_exp_set_header_analysis_desc,
x0.ES_FK AS exp_set_id,
…
VARCHAR('Sk_GEML_2(' || x1.BIOLOGY_DESC || x1.ANALYSIS_DESC || … || ')') AS ClioSet0,
VARCHAR('Sk_GEML_3(' || x1.BIOLOGY_DESC || x1.ANALYSIS_DESC || … || ')') AS ClioSet1

FROM GENEX.TREATMENTLEVEL x0, GENEX.EXPERIMENTSET x1
WHERE x0.ES_FK = x1.ES_PK),

ExpFactorFlat AS -- Q2: The join of relational data for ExpFactor
(SELECT DISTINCT

VARCHAR('SK29(' || x0.FACTOR_NAME || … || ')') AS exp_factor_id,
x0.FACTOR_NAME AS exp_factor_factor_name,
…
VARCHAR('Sk_GEML_2(' || x1.BIOLOGY_DESC || x1.ANALYSIS_DESC || … || ')') AS InSet

FROM GENEX.EXPERIMENTFACTOR x0, GENEX.EXPERIMENTSET x1
WHERE x0.ES_FK = x1.ES_PK),

TreatmentLevelFlat AS -- Q3: The join of relational data for TreatmentLevel
(SELECT DISTINCT

VARCHAR('SK109(' || x0.NAME || ',' … || ')') AS treatment_id,
x0.NAME AS treatment_treatment_name,
VARCHAR('Sk_GEML_4 (' || 'SK110(' || x0.NAME || x1.RELEASE_DATE || … || ')') AS ClioSet0,
VARCHAR('Sk_GEML_3(' || x1.BIOLOGY_DESC || x1.ANALYSIS_DESC || … || ')') AS InSet

FROM GENEX.TREATMENTLEVEL x0, GENEX.EXPERIMENTSET x1
WHERE x0.ES_FK = x1.ES_PK),

Figure 6: SQL/XML script, relational part.

{(o1,(i3))}. We would expect this tuple to be merged with the previ-
ous result and produce only one tuple foro1 with three items nested
inside. We call this special union operationdeep-union.

We illustrate the algorithm by showing the generated query in the
case of SQL/XML, a recent industrial standard that extends SQL with
XML construction capabilities. For the example, we assume that we
are only interested in generating the transformation for two of our
logical mappings:m1 (mapping experiment sets with their associ-
ated experiment factors) andm2 (which is similar tom1 and maps
experiment sets with their associated treatment levels).

The generated SQL/XML script can be separated in two parts. The
first part (shown in Figure 6) generates a flat representationof the out-
put in which a collection of tuples is represented by a systemgener-
ated ID, and each tuple contains the ID of the collection it issupposed
to belong to. The purpose of the second part (Figure 7) is to recon-
struct the hierarchical structure of the target by joining tuples based
on their IDs (i.e., joining parent collections with the corresponding
children elements based on IDs). The final result is free of duplicates
and merged according to the deep union semantics.

Briefly, Q1 joinsEXPERIMENTFACTORwith EXPERIMENTSET
and will be used to populate the atomic components at theexp set
level in the target (thus, not including the atomic data thatgoes under
exp factor andtreatment). Two set-IDs are generated in Q1
(under the columnsClioSet0 andClioSet1), for each different
set of values that populate the atomic components at theexp set
level. The first one,ClioSet0, will be used to groupexp factor
elements underexp set, while ClioSet1 will be used to group
treatment elements. The values for the set-IDs are generated as
strings, by using two distinct Skolem functions that dependon all the
atomic data at theexp set level. The atomic data forexp factor
andtreatment are created by Q2 and Q3, respectively. In both
cases, a set-ID (namedInSet) is created to capture what experi-
ment set the data belongs to. The main idea here is that, as long as
the values that go into the atomic components at theexp set level
are the same, the InSet set-ID will match the set-ID stored under
ClioSet0 (in the case of Q2) orClioSet1 (in the case of Q3).
On a different note, we remark that all queries that appear inthe first
half of the script (e.g., Q1, Q2, and Q3) use theDISTINCT clause

ExpFactorXML AS -- Q4: Add XML tags to the data from Q2.
(SELECT

x0.InSet AS InSet,
xml2clob(

xmlelement(name "exp_factor",
xmlattribute(name "factor_name", x0.exp_factor_factor_name),
xmlelement(name "id", x0.exp_factor_id),
…

)) AS XML
FROM ExpFactorFlat x0),

TreatmentLevelXML AS -- Q5: Add XML tags to the data from Q3.
(SELECT

x0.InSet AS InSet,
xml2clob(

xmlelement(name "treatment",
xmlattribute(name "id", x0.treatment_id),
xmlattribute(name "treatment_name", x0.treatment_treatment_name)

)) AS XML
FROM TreatmentLevelFlat x0),

-- Q6: Combines the results of Q1, Q4, and Q5 into one XML document.
SELECT xml2clob(xmlelement (name "exp_set",

xmlattribute (name "id", x0.exp_set_id),
…
xmlelement (name "exp_set_header",

xmlelement (name "biology_desc", x0.exp_set_exp_set_header_biology_desc),
xmlelement (name "analysis_desc", x0.exp_set_exp_set_header_analysis_desc),
xmlelement (name "exp_factors_list",

(SELECT xmlagg (x1.XML)
FROM ExpFactorXML x1
WHERE x1.InSet = x0.ClioSet0)),

xmlelement (name "treatment_list",
(SELECT xmlagg (x1.XML)
FROM TreatmentLevelXML x1
WHERE x1.InSet = x0.ClioSet1)))

)) AS XML
FROM ExpSetFlat x0

Figure 7: SQL/XML script continued, XML construction part.

to remove duplicate values.
In the second half of the script, the query fragments Q4 and Q5

perform the appropriate XML tagging of the results of Q2 and Q3.
Finally, Q6 tags theexp set result of Q1 and, additionally, joins
with Q4 and Q5 using the created set-IDs, in order to nest all the
correspondingexp factor andtreatment elements.

4. REMAINING CHALLENGES
There remain a number of open issues regarding scalability and

expressiveness of mappings. Complex mappings sometimes need a
more expressive correspondence selection mechanism than that sup-
ported by Clio. For instance, deciding which group of correspon-
dences to use in a logical mapping may be based on a set of pred-
icates. We are also exploring the need for logical mappings that
nest other logical mappings inside. Finally, we are studying mapping
adaptation issues that arise when source and target schemaschange.

5. REFERENCES
[1] P. Bernstein. Applying Model Management to Classical Meta Data

Problems. InCIDR, 2003.
[2] R. Fagin, P. Kolaitis, L. Popa, and W.-C. Tan. Composing Schema

Mappings: Second-Order Dependencies to the Rescue. InPODS, 2004.
[3] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange:

Semantics and Query Answering. InICDT, 2003.
[4] M. Lenzerini. Data Integration: A Theoretical Perspective. In PODS,

2002.
[5] S. Melnik, P. A. Bernstein, A. Halevy, and E. Rahm. Supporting

Executable Mappings in Model Management. InSIGMOD, 2005.
[6] R. J. Miller, L. M. Haas, and M. A. Hernández. Schema Mapping as

Query Discovery. InVLDB, 2000.
[7] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin.

Translating Web Data. InVLDB, 2002.
[8] E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic

Schema Matching.The VLDB Journal, 10(4):334–350, 2001.
[9] N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and V. Y. Lum.

EXPRESS: A Data EXtraction, Processing, and REStructuringSystem.
TODS, 2(2):134–174, 1977.

810

