
Enterprise Information Integration: Successes, Challenges
and Controversies

Alon Y. Halevy∗(Editor), Naveen Ashish†, Dina Bitton‡, Michael Carey§, Denise Draper¶,
Jeff Pollock‖, Arnon Rosenthal∗∗, Vishal Sikka††

ABSTRACT
The goal of EII systems is to provide uniform access to mul-
tiple data sources without having to first load them into a
data warehouse. Since the late 1990’s, several EII products
have appeared in the marketplace and significant experience
has been accumulated from fielding such systems. This col-
lection of articles, by individuals who were involved in this
industry in various ways, describes some of these experiences
and points to the challenges ahead.

1. INTRODUCTORY REMARKS

Alon Halevy
University of Washington & Transformic Inc.

alon@cs.washington.edu

Beginning in the late 1990’s, we have been witnessing the
budding of a new industry: Enterprise Information Integra-
tion (EII). The vision underlying this industry is to provide
tools for integrating data from multiple sources without hav-
ing to first load all the data into a central warehouse. In the
research community we have been referring to these as data
integration systems.

This collection of articles accompanies a session at the
SIGMOD 2005 Conference in which the authors discuss the
successes of the EII industry, the challenges that lie ahead
of it and the controversies surrounding it. They represent
some, but obviously not all, of the companies who are in-
volved in the space. The following few paragraphs serve as

∗University of Washington
†Nasa Ames
‡Callixa
§BEA Systems
¶Microsoft Corporation
‖Network Inference

∗∗Mitre Corporation
††SAP

Copyright 2002 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
SIGMOD ’05 June 14-16, 2005, Baltimore, Maryland USA
Copyright 2005 ACM 1-59593-060-4/05/06 ...$5.00.

an introduction to the issues, admittedly with the perspec-
tive of the editor.

Several factors came together at the time to contribute to
the development of the EII industry. First, some technolo-
gies developed in the research arena have matured to the
point that they were ready for commercialization, and sev-
eral of the teams responsible for these developments started
companies (or spun off products from research labs). Sec-
ond, the needs of data management in organizations have
changed: the need to create external coherent web sites
required integrating data from multiple sources; the web-
connected world raised the urgency for companies to start
communicating with others in various ways. Third, the
emergence of XML piqued the appetites of people to share
data. Finally, there was a general atmosphere in the late 90’s
that any idea is worth a try (even good ones!). Importantly,
data warehousing solutions were deemed inappropriate for
supporting these needs, and the cost of ad-hoc solutions were
beginning to become unaffordable.

Broadly speaking, the architectures underlying the prod-
ucts were based on similar principles. A data integration
scenario started with identifying the data sources that will
participate in the application, and then building a virtual
schema (often called a mediated schema), which would be
queried by users or applications. Query processing would be-
gin by reformulating a query posed over the virtual schema
into queries over the data sources, and then executing it effi-
ciently with an engine that created plans that span multiple
data sources and dealt with the limitations and capabilities
of each source. Some of the companies coincided with the
emergence of XML, and built their systems on an XML data
model and query language (XQuery was just starting to be
developed at the time). These companies had to address
double the problems of the other companies, because the re-
search on efficient query processing and integration for XML
was only in its infancy, and hence they did not have a vast
literature to draw on.

Some of the first applications in which these systems were
fielded successfully were customer-relationship management,
where the challenge was to provide the customer-facing worker
a global view of a customer whose data is residing in mul-
tiple sources, and digital dashboards that required tracking
information from multiple sources in real time.

As with any new industry, EII has faced many challenges,
some of which still impede its growth today. The following
are representative ones:

Scaleup and performance: The initial challenge was to
convince customers that the idea would work. How could

778

a query processor that accesses the data sources in real
time have a chance of providing adequate and predictable
performance? In many cases, administrators of (very care-
fully tuned) data sources would not even consider allowing
a query from an external query engine to hit them. In this
context EII tools often faced competition from the relatively
mature data warehousing tools. To complicate matters, the
warehousing tools started emphasizing their real-time capa-
bilities, supposedly removing one of the key advantages of
EII over warehousing. The challenge was to explain to po-
tential customers the tradeoffs between the cost of building
a warehouse, the cost of a live query and the cost of ac-
cessing stale data. Customers want simple formulas they
could apply to make their buying decisions, but those are
not available.

Horizontal vs. Vertical growth: From a business per-
spective, an EII company had to decide whether to build
a horizontal platform that can be used in any application
or to build special tools for a particular vertical. The ar-
gument for the vertical approach was that customers care
about solving their entire problem, rather than paying for
yet another piece of the solution and having to worry about
how it integrates with other pieces. The argument for the
horizontal approach is the generality of the system and of-
ten the inability to decide (in time) which vertical to focus
on. The problem boiled down to how to prioritize the scarce
resources of a startup company.

Integration with EAI tools and other middleware:
To put things mildly, the space of data management mid-
dleware products is a very complicated one. Different com-
panies come at related problems from different perspectives
and it’s often difficult to see exactly which part of the prob-
lem a tool is solving. The emergence of EII tools only further
complicated the problem. A slightly more mature sector
is EAI (Enterprise Application Integration) whose products
try to facilitate hooking up applications to talk to each other
and thereby support certain workflows. Whereas EAI tends
to focus on arbitrary applications, EII focuses on the data
and querying it. However, at some point, data needs to be
fed into applications, and their output feeds into other data
sources. In fact, to query the data one can use an EII tool,
but to update the data one typically has to resort to an
EAI tool. Hence, the separation between EII and EAI tools
may be a temporary one. Other related products include
data cleaning tools and reporting and analysis tools, whose
integration with EII and EAI does stand to see significant
improvement.

Meta-data Management and Semantic Heterogene-
ity: One of the key issues faced in data integration projects
is locating and understanding the data to be integrated. Of-
ten, one would find that the data needed for a particular
integration application is not even captured in any source
in the enterprise. In other cases, significant effort is needed
in order to understand the semantic relationships between
sources and convey those to the system. Tools addressing
these issues are relatively in their infancy. They require
both a framework for storing the meta-data across an en-
terprise, and tools that make it easy to bridge the semantic
heterogeneity between sources and maintain it over time.

Summary: The EII industry is real – in 2005 it is expected
to have revenues of at least half a billion dollars. However, it

is clear that the products we have today will have to change
considerably in order for this industry to realize its full po-
tential, and its positioning still needs to be further refined.
I personally believe that the success of the industry will de-
pend to a large extent on delivering useful tools at the higher
levels of the information food chain, namely for meta-data
management and schema heterogeneity.

2. TOWARDS COST-EFFECTIVE AND SCAL-
ABLE INFORMATION INTEGRATION

Naveen Ashish
NASA Ames

ashish@email.arc.nasa.gov

EII is an area that I have had involvement with for the
past several years. I am currently a researcher at NASA
Ames Research Center, where data integration has been and
remains one of my primary research and technical interests.
At NASA I have been involved in both developing infor-
mation integration systems in various domains, as well as
developing applications for specific mission driven applica-
tions of use to NASA. The domains have included integra-
tion of enterprise information, and integration of aviation
safety related data sources. Previously I was a co-developer
for some of the core technologies for Fetch Technologies, an
information extraction and integration company spun out of
my research group at USC/ISI in 2000. My work at NASA
has provided the opportunity to look at EII not only from
a developer and provider perspective, but also from a con-
sumer perspective in terms of applying EII to the NASA
enterprise’s information management needs.

A primary concern for EII today regards the scalability
and economic aspects of data integration. The need for
middleware and integration technology is inevitable, more so
with the shifting computing paradigms as noted in [10]. Our
experience with enterprise data integration applications in
the NASA enterprise tells us that traditional schema-centric
mediation approaches to data integration problems are of-
ten overkill and lead to overly and unnecessary investment
in terms of time, resources and cost. In fact the investment
in schema management per new source integrated and in
heavy-weight middleware are reasons why user costs increase
directly (linearly) with the user benefit with the primary in-
vestment going to the middleware IT product and service
providers. What is beneficial to end users however are in-
tegration technologies that truly demonstrate economies of
scale, with costs of adding newer sources decreasing signifi-
cantly as the total number of sources integrated increases.

How is scalability and cost-effectiveness in data integra-
tion achieved? Note that the needs of different data inte-
gration applications are very diverse. Applications might
require data integration across anywhere from a handful of
information sources to literally hundreds of sources. The
data in any source could range from a few tables that could
well be stored in a spreadsheet to something that requires
a sophisticated DBMS for storage and management. The
data could be structured, semi-structured, or unstructured.
Also, the query processing requirements for any application
could vary from requiring just basic keyword search capabil-
ities across the different sources to sophisticated structured
query processing across the integrated collection.

779

This is why a one-size-fits-all approach is often unsuitable
for many applications and provides the motivation for de-
veloping an integration approach that is significantly more
nimble and adaptable to the needs of each integration appli-
cation. We begin by eliminating some tacit, schema-centric
assumptions that seem to be holding for data integration
technology, namely:

• Data must always be stored and managed in DBMS
systems

Actually, requirements of applications vary greatly rang-
ing from data that can well be stored in spreadsheets,
to data that does indeed require DBMS storage.

• The database must always provide for and manage the
structure and semantics of the data through formal
schemas

Alternatively, the “database” can be nothing more than
intelligent storage. Data could be stored generically
and imposition of structure and semantics (schema)
may be done by clients as needed.

• Managing multiple schemas from several independent
sources and interrelationships between them, i.e., “schema-
chaos” is inevitable and unavoidable

Alternatively, any imposition of schema can be done
by the clients, as and when needed by applications.

• Clients are too light-weight to do any processing. Thus
a significant component of integration across sources
must be, in a sense, ”pre-compiled” and loaded into a
centralized mediation component

This assumption is based on a 1960s paradigm where
clients had almost negligible computing power. Clients
of today have significant processing power and sophis-
ticated functionality can well be pushed to the client
side.

Many enterprise information integration applications do
not actually require a schema-centric approach. A system
called NETMARK, developed at the NASA Ames Research
Center actually demonstrates the feasibility of a lean ap-
proach to information integration where schema-imposition
is done minimally and only to the extent needed. The
essence of the approach is that data is managed in a schema-
less manner; also most computational or aggregation func-
tionalities required are pushed to the client side thus re-
ducing the mediator to a mere router of information. The
technical details of this approach are presented in works such
as [4, 5] and the claim is that this “schema-less” approach
to information integration actually leads to scalability and
cost-effectiveness in enterprise information integration with
an increasing number of sources. Note that the argument
is not against schema based approaches in-toto. There are
and certainly will be applications where schemas already ex-
ist, and are in fact absolutely needed, and where a formal
schema and mediated approach will be required to achieve
data integration. Our argument is that on the other hand,
there is a significant space of integration applications that
do not require the use and investment in schemas.

The key distinguishing features of the NETMARK ap-
proach are that:

• Data is managed in a schema-less system, eliminating
the need for schema management and database admin-
istration.

• Commonly used business documents (MS Word, Excel,
PowerPoint) are the interface to the integrated pool of
enterprise information.

The above system and approach have been used very suc-
cessfully in many NASA enterprise information applications.
From an economic and scalability perspective the claim made
is the following:

• Traditional schema-centric approaches to information
mediation are inhibiting the scalability and cost effec-
tiveness of information integration for many enterprise
applications.

• A lean, schema-less approach to information integra-
tion works successfully for a major space of applica-
tions leading to scalable and cost-effective data inte-
gration from the user perspective.

3. WHY EII WILL NOT REPLACE THE DATA
WAREHOUSE

Dina Bitton
Chief Technical Officer
Callixa, San Francisco
dbitton@callixa.com

In the past fifteen years, data warehousing and its asso-
ciated ETL (Extract, Transform, Load) technologies have
delivered great business values to enterprises looking to in-
tegrate and analyze large volumes of disparate customer
and product data. The data warehouse has successfully
evolved from monthly dumps of operational data lightly
cleansed and transformed by batch programs, to sophisti-
cated metadata-driven systems that move large volumes of
data through staging areas to operational data stores to
data warehouses to data marts. However the forever in-
creasing demand for lower cost and real-time information
delivery is leading to the development and adoption of on-
demand information integration technologies. For instance,
real-time analytics and reporting, resulting from competi-
tive and compliance pressures, are driving the need for a
“virtual data warehouse” approach to integrate and present
disparate data. Several EII (Enterprise Information Integra-
tion) technologies have come to market allowing disparate
data sources to be integrated on-demand, without moving
and replicating them, and providing a single SQL or Xquery
interface to these multiple sources.

As often happens, some argue that this new technology
makes the older obsolete, and that EII, even though now in
its market infancy, will replace the data warehouse. In this
short paper, we argue two points against that view:

• To be viable, EII technologies need to deliver levels
of performance and scalability similar to the ones ex-
pected from RDBMS. And to adequately measure EII
performance, we need a standardized benchmark – a
la TPC.

780

• Even when it matures and succeeds, EII will not re-
place the data warehouse. Depending on the problem
to be solved, integrated data will be persisted into a
warehouse, or virtualized through EII.

Performance and Scalability for EII
EII uses queries to collect and integrate data and content
from multiple sources. An EII query is a federated query,
formulated against an integrated view of the data sources.
To execute a federated query, an EII server goes out to the
data sources to find the relevant data and processes it into
the context of the application view. A simplistic approach
that some early EII vendors used, was to pull out the rele-
vant data from all the data sources into an Xquery processor
and process it entirely there. To understand why this ap-
proach cant provide acceptable performance, just consider
the example of a cross-database join query that joins 2 very
large tables, from two data sources. Each table would be
converted to XML, increasing its size about 3 times, moved
across the network and then joined. There are two major
performance problems associated with this approach. First
a huge amount of data is moved across the network. Second,
the join operation in a newly designed Xquery processor will
not be optimized. Instead, some advanced parallel process-
ing and query optimization techniques should be applied.

Since the sources reside on different hardware, operating
systems and databases, a single query submitted to an EII
engine must be decomposed to component queries that are
distributed to the data sources, and the results of the com-
ponent queries must be joined at an assembly site. The
assembly site may be a single hub or it may be one of the
sources. In some EII products, the hub is an RDBMS in-
stance (e.g. IBM Information Integrator), or an Xquery pro-
cessor. The component queries are usually executed through
data wrappers that push down RDBMS-specific SQL queries
to the sources. The nature of the component queries de-
pends on the schema translator, which translates the inte-
grated schema into the data source schemata, and on the
query optimizer of the EII engine. Clearly, the more work
the component queries can do, the less work will remain to
be done at the assembly site.

This brief description of query processing in an EII engine
clearly indicates that critical EII performance factors will re-
late to the distributed architecture of the EII engine and its
ability to (a) maximize parallelism in inter and intra query
processing; (b) minimize the amount of data shipped for as-
sembly by utilizing local reduction and selecting the best
assembly site. These problems have been well addressed by
designers of parallel database servers, and similar techniques
should be used by EII architects.

Needless to say, query optimization of an EII query is
not a simple problem. Unfortunately, pressure to bring to
market an EII product in a short time has often resulted in
simplistic solutions that will not perform or scale.

EII and Data Warehousing
Assuming that EII will replace data warehousing is also very
simplistic. Data warehouses will continue to be built and
used for complex analytics. EII will fill the demand for on-
demand, rapid and flexible integration in other applications.
The question is really when to persist integrated data versus
when to virtualize it. Here are a few guidelines that can be
applied when making that choice.

Guidelines of Persistence:

1. Persist data to keep history.

Warehouses store historical data that is captured from
sources at an interval. As there is no other source for
history, warehouses must be in place to store and save
historical data.

2. Persist data when access to source systems is denied.

For many reasons (operational, security, or other) a
database federating technology may be denied access
to a source. In this case the source data must be ex-
tracted to a persistent data store such as a data ware-
house

Guidelines of Virtualization (Federation):
These virtualization guidelines should only be invoked af-

ter none of the persistence guidelines apply.

1. Virtualize data across multiple warehouse boundaries
and virtualize new data marts.

Instead of redundantly copying data into multiple data
warehouses, virtualize the shared data from one ware-
house to another. By definition, a conformed dimen-
sion is shared between multiple data marts. Virtualize
the conformed dimension to let it match the semantics
of the non-conforming dimensions to increase usabil-
ity. Another scenario where a virtual data mart is a
great solution is where a new external data source that
had not been included in the design of the warehouse
needs to be integrated with an existing data warehouse
or data mart.

2. Virtualize data for special projects and to build proto-
types.

Data can quickly be assembled for one-time reports or
for prototyping new applications by building a virtual
schema of the required data.

3. Virtualize data that must reflect up-to-the-minute op-
erational facts.

In applications such as dashboards or portals, data
has to reflect the current state of operations. For these
applications, virtual integration through EII is a must.

Conclusion
EII potentially offers a more flexible and more inclusive ap-
proach to integrating information than data warehousing.
However, to perform adequately, EII servers need to build
on the vast expertise embedded in parallel database servers,
rather than replace them. Schema translation and feder-
ated query decomposition should aim at generating compo-
nent queries that can be pushed down to mature database
servers for efficient execution. Finally, even as EII technol-
ogy matures, it is unlikely to replace the data warehouse
because it does not solve the same problems.

4. EAI ... EII ... AYE YI YI!

Michael Carey
BEA Systems

mcarey@bea.com

781

As discussed in the Introduction to this article, the state
of affairs today is that there are two different product cate-
gories in the “integration middleware” software space – EAI
and EII. Like several other major software vendors, BEA
Systems has a product offering in each category.

For EAI, BEA offers a product called WebLogic Integra-
tion. A major feature of this product is its support for
business process management (a.k.a. workflow management
or service orchestration). Connectivity to a wide variety of
enterprise applications and information sources is provided
through the provision of a large collection of XML-based
application adaptors as well as general support for invoca-
tion of Web services. Support for data transformation and
normalization is provided as well, via a streaming XQuery-
based data transformation engine as well as a runtime en-
gine that enables XML-based access to non-XML (binary)
data streams. WebLogic Integration also provides message
brokering capabilities for enterprise messaging and routing.
With these capabilities, including a visual programming en-
vironment for specifying business processes, it is possible for
BEA customers to access, integrate, update, and orchestrate
an arbitrarily wide range of applications and data sources
in a procedural (but still relatively high-level) fashion.

For EII, BEA offers a product called Liquid Data for We-
bLogic. In its currently available form, Liquid Data provides
a framework for accessing and integrating data from a wide
range of enterprise applications and information sources.
(Sound familiar?) Access to data locked inside applications
and/or web services is provided via the same connectivity
options offered by WebLogic Integration. In addition, of
course, Liquid Data provides access to data that resides in
relational databases, pushing query processing the the un-
derlying databases when possible. Other supported data
sources include database stored procedures, XML files, de-
limited files, and data from in-flight messages. Data in-
tegration is accomplished declaratively through the use of
XQuery as a language for combining and transforming data
from the various data sources (all of which surface their data
as XML data with XML Schema descriptions).

So what’s the problem? From the standpoint of a cus-
tomer trying to solve a real business integration problem, the
artificial separation of the integration world into EAI and
EII is confusing – which technology should be used when,
and why? EAI is “integration complete” in the sense that
there’s basically nothing that it fundamentally can’t do. For
example, picture a large enterprise that wants to enable its
employees to have web-based access to all of the relevant in-
formation about them (address, phone, benefits, office, com-
puter hardware, etc.). Such an employee self-service portal
would surely need to integrate information from a number
of backend applications and databases in order to obtain a
“single view of employee” for presentation and other actions.
One solution would be to use EAI technology to construct a
business process that accesses the various backend systems,
transforms their data into the desired canonical form, and
stitches it together into a coherent single view of employee.
Updates, such as an address change, could be handled by
another business process that notifies the various systems
that need to know when an employee’s address changes.

Another solution to the “single view of employee” problem
would be to use EII technology to create the desired view.

For data access, this is actually the preferable approach, as
constructing the EAI business process is like hand-writing
a distributed query plan. If employee data can be accessed
other than by employee id, e.g., “find all employees in de-
partment D”, “find all employees at location L”, and/or
“find all employees with computer model M”, different query
plans are likely to be needed. Twenty plus years of database
experience has taught us that it is likely to be much more
productive to express the integration of employee data once,
as a view of some sort, and then to let the system choose the
right query plan for each of the different employee queries.
However, there’s more to data than reads. What about up-
dates? A virtual database update model is often not the best
fit for enterprise integration scenarios. ”Insert employee into
company” is really a business process, possibly needing to
run over a period of hours or days (e.g., to provision an of-
fice and a phone and order computer equipment and have
that order approved). Such an update clearly must not be
a traditional transaction, instead demanding long-running
transaction technology and the availability of compensation
capabilities in the event of a transaction step failure.

For the reasons cited above, BEA recommends the use of
both these technologies as a best practice. EII eases the de-
velopment of the data access part of enterprise integration
applications, while EAI makes possible the kinds of updates
and other operations needed to solve a complete business
problem. However, this separation is painful today, as using
both requires developers to say the same sorts of things at
least twice (once for the EII system and at least once for
the EAI system, maybe more times, e.g., possibly once per
business process). For example, the EII single view of em-
ployee query will access and stitch together an employee’s
data from the various systems of record – the HR database,
the facilities management system, and so on – and this inte-
gration will be expressed as a query of some sort. In the BEA
product family, it is expressed declaratively as an XQuery
function. The various EAI update operations will each touch
some, possibly many, of the same enterprise systems – but
the update operations are expressed via a very different pro-
gramming model, in BEA’s case via a business process defi-
nition language called JPD (Java Process Definition, similar
to the BPEL language which is now gaining traction in the
EAI world). As a result, the developer again has to define
the ways in which the data for the single view of employee
is mapped to and from the underlying enterprise systems.
This is not, by the way, a BEA problem – it is an industry
problem. (For example, IBM has even more EAI and EII
products that a customer must sift through and combine in
order to solve a given enterprise integration problem.)

So what’s the bottom line? EII must die – EAI must die
– and they must be reborn, together, as simply an EI (En-
terprise Integration) solution. EAI alone can do the job,
but in a manner analogous to writing database applications
in the BC period (Before Codd). EII alone cannot do the
job, because the virtual database view that current EII prod-
ucts provide fall too far short when asked to stretch beyond
simple read-only applications. A combination can do the
job, but who wants to say the same thing twice using two
different programming models? Customers need Enterprise
Integration. It’s time for those of us in the database R&D
community to pay attention to what they really need from
us and start working on solutions that work...!

782

5. THE NIMBLE EXPERIENCE

Denise Draper
Microsoft Corporation
denised@microsoft.com

In 1999 I started working at a company called Nimble
Technology [2]; our goal was to create a query-driven sys-
tem for integration of heterogeneous data, a technology that
later came to be known as EII. Over the next five years we
developed a novel EII engine and related tools, and went
to market with a solution for the enterprise. We had some
successes, but not near as much as we thought we deserved.
In this note I’ll try to lay why I think that was, and the
implications for EII in the future.

5.1 EII, a Gratifyingly Hard Technical Prob-
lem

EII (defined as “answering queries over distributed hetero-
geneous sources”), is one of those really gratifying problems:
it has both hard technical challenges, and at the same time a
clear, elegant outline: you need to solve the problem of map-
ping between data models in an extensible way, you need to
be able to decompose your queries across multiple sources,
you need to be able to optimize queries in this environment,
etc. Of course, there is already a long history of work in this
area, ranging back to [1] and including substantial research
groups such as [3], but it is far from a solved problem.

The Nimble system had novel technology in a couple of
areas. The most obvious was that we chose an XML-based
data model and query language rather than a relational one,
and we did some novel work in XML query processing. But
this had less significance for EII, at least at this time, than
we originally thought. There is a good argument that XML
has a natural affiliation for data integration, based on XML’s
ability to represent “messy” data structures (missing data,
duplicate data, variant representations). However experi-
ence with customers taught us that the state of application
development (even to the level of putting some data on a web
page) has not evolved to the point where the application in-
frastructure can take advantage of—or even accommodate—
“messiness”. So while I remain convinced of XML’s value
in the long run, at this point it’s potential was barely being
used in the applications people were building, and it doesn’t
by itself solve many of the other hard problems of EII.

There were some other technical choices we made that I
feel were good ones, including:

• Within our SQL adapters, we modeled the individual
quirks of different vendors and versions of databases to
a much finer degree than I have observed in other sys-
tems. This had a decisive impact on our performance
on every comparison we were ever able to make, since
it meant we could push predicates that other systems
wouldn’t.

• We used views as a central metaphor for our system.
There wasn’t too much to this from a technical stand-
point (except putting a lot of work into optimization
over unfolded views). But it had a profound impact
from the perspective of usability. Simply put, integra-
tion of data from heterogeneous sources is a pretty
messy job, and views allow one both to factor the

job into smaller pieces, and to keep and re-use those
pieces across multiple queries. This realization points
towards one of the main areas I see for EII going for-
ward, which is integration into a greater landscape of
modeling and metadata management.

Working with initial customer scenarios, we soon added
a couple more features, not part of the “pure” definition of
EII, both of which I believe are essential:

• A materialized view capability that allowed adminis-
trators to pre-compute views. In essence, the adminis-
trator was able to choose whether she wanted live data
for a particular view or not. Another way to look at
this was as a light-weight ETL system; more on that
later.

• A record-correlation capability that enabled customers
to create joins over sources that had no simply-computable
join key. It turns out that if the data sources are re-
ally heterogeneous, the probability that they have a
reliable join key is pretty small. Our system worked
by creating and storing what was essentially a join in-
dex between the sources.

5.2 EII, Not an easy Business
We implemented all the technology outlined in the previ-

ous section, and more (a graphical query builder, client-side
SDK’s, etc.). The raw performance data we saw still had
room for improvement, but it was pretty good and within
acceptable overhead for a middleware layer. Yet still we
found it was difficult to grow a business from this. Why?
There are many contributing factors, but I believe the major
factor was the difficulty in distinguishing the value of EII as
an independent product.

One way to look at this is to consider that EII is in com-
petition with ETL into a warehouse or mart. From the
customer’s perspective, both address the same problem, the
problem of integrating heterogeneous data.1 Thus for EII
to have an advantage, it either has to solve some different
class of problem (or the same class but “better”), or it has
to be less costly than ETL by some measure. Let’s look at
both sides of this equation:

One main distinction between EII and ETL is that EII
is a “pull” or on-demand technology, while ETL (as I am
using the term here) is a “push” technology. So one of the
advantages of EII is that the customer can get access to
the current “live” data. There are scenarios in which this
is very important, but one of the things we were surprised
by was how little most customers actually valued live data,
especially if their alternatives were fairly low latency (24
hours or less).

Another way EII could provide more value would be if
data sources were dynamically discoverable and queryable
(compared to the a priori set up and data mapping done in
both EII and ETL systems today). To do that at a level
any deeper than keyword search requires some ability to au-
tomatically map and extract information from sources that
is much greater than we have today. Based on the kinds
of real-world data integration cases I have seen, I am not

1This is a very database-centric way of looking at it. Some-
one building a web site is more likely to think that EII com-
petes with a bit of script he creates manually, which leads
to a somewhat different trade-off discussion.

783

confident that we will have that kind of capability in reach
anytime soon.

On the cost side, there would seem to be a clear advantage
for EII: there is no need for a warehouse or other repository
for copied data. But at least the cost of the warehouse, and
the processing time required to load it, are predictable and
can be budgeted for. In contrast, EII is not well understood,
and thus unpredictable in performance and load. And there
are significant classes of queries to which EII is simply not
suited for performance reasons.

Finally, the greatest cost in an ETL model is the human
cost of setup and administration: understanding the query
requirements, understanding the data sources, building and
maintaining the complex processes that clean and integrate
the data. But EII has exactly the same costs, for a deep
reason: while the tools and languages may be different, ul-
timately the same logic is being performed.

5.3 So Where to go?
Does this mean that EII is a lost cause? A dead end?

I don’t believe so, but I believe that the value of EII will be
realized as one technology in the portfolio of a general data
platform, rather than as an independent product. The ETL
approach to the problem cannot be the final answer because
it simply is not possible to copy all potentially relevant data
to some single repository. The dynamic of our world has
been inexorably towards more and more connectedness, and
more and more demand for meaningful access to data, and
copying data doesn’t scale indefinitely.

In order to meet the demand, we will need the ability to
dynamically find, model, and query data sources. Adapters
need to disappear, replaced by sufficiently standard inter-
faces (web services + standard metadata and query inter-
faces?). Users need to be able to find data that they need
(search and navigation are a start), and they need decent
mechanisms that then allow them to query including feed-
back about expected performance. We need ways for dy-
namic/pull/EII queries to be migrated to high-performance
ETL processes—which is easier if they both share the same
data model and query/processing language. And we need
to help administrators figure out where the high-demand
data that should be pre-processed is, or to automatically and
adaptively do it for them. When we get to this point, EII
and ETL are essentially choices in an optimization problem,
like choosing between different join algorithms. Of course
we all know how easy optimizers are...

A connected thread to this is to address modeling and
metadata management, which is the highest cost item in the
first place. Even if end users can go and find their own data,
they won’t get enough value through that alone. There will
always be need for “high value” model creation from trained
people who understand data models and query languages
deeply. Tools that help them attach logical models to data
and track those models through transformations and queries
would be of immense help. Simply getting enough of a data
modeling standard in place that vendors can actually inter-
operate would be huge step forward all by itself. And then
there the next challenge: handling change (impact analy-
sis and response to changes, such as upgrading applications,
which change data models or semantics). Improvements in
these areas help both ETL and EII, and preferably treat
them together (modeling the relationships and meaning of
data separately from the aspect of when and where it is

computed).
Some of these items are in place already, some won’t be

for years, but I expect to see continued progress, and EII
will continue to be part of the overall solution.

6. EII GOT THE SECOND “ I ” WRONG

Jeff Pollock
Network Inference

Jeff.Pollock@networkinference.com

The notion of “integrating” information is fundamentally
flawed in all but rare cases. In fact, the second “I” in
EII should have been for “interoperability”, which implies a
loose, not tight coupling of shared data. In order to couple
data loosely, and in order for isolated data to become infor-
mation, formal semantics must be added. But no existing
EII tools use formal semantics, so information integration
accurately describes the current EII space after all.

Ten years ago I wrote my first database driven web site, an
HR application for Amgen’s internal training courses that
used FileMaker Pro and AppleScript to cull data from dif-
ferent HR databases and allow employees to register for up-
coming classes. From that point forward I became acutely
aware, and deeply involved with the challenges of sourcing
data that originates from different systems to new applica-
tions. Prior to that I had only dealt with mini and main-
frame VAX systems and the occasional client/server type
systems common in the early 1990s. Building composite ap-
plications, portal type environments, and deploying modern
middleware is galaxies away from those old vt420’s I used
to hack on.

Since those days I have built CORBA, EAI, and many
application server based n-tier systems, where the hub and
spoke pattern of protocol switching and data integration
played out with ever so many forms of syntactic sugar. My
years with Ernst & Young’s Center for Technology Enable-
ment exposed me to some of the largest and most compli-
cated software environments throughout the Fortune 500.
I was at E&Y in 1997 when XML was gaining momentum
and, like so many, I bought into the XML hype after the
W3C recommended it in early 1998 - back when XML was
set to solve world hunger and cure cancer. Remember the
glory days of the internet and the rise of XML?

Now with the battle scars of several large system deploy-
ments that employed ETL, custom data feeds, EAI, and
XML based data interchange - I can finally see that the
fundamental hard part is the same - no matter what data
syntax or structure you happen to choose.

Enterprise Information Integration, as a market category
was branded by the Aberdeen Group in May of 2002. I know
and remember this well because at that time I was CTO of
a small San Francisco startup that was desperately trying to
brand the EII category as “Enterprise Information Interop-
erability”. Our little 30 person company was dismayed when
Aberdeen claimed the TLA for their own. At Modulant, our
motto was, “it’s all about context, baby.” We understood
then that for information to be efficiently shared, yet still be
federated, you had to account for meaning (and that mean-
ing occurs only within a context). We decided then that
EII didn’t embody that spirit of semantics and therefore we
ditched the EII acronym and learned a sound business les-

784

son the hard way - startups don’t claim and name markets,
analysts do.

I have a shockingly simple view of today’s EII: it only
does three things well, and it only comes in three flavors.
First, the three things it does well (compared to the myr-
iad of other integration techniques) are: (1) highly efficient
federated queries, (2) internal management of common data
views, and (3) management of metadata designed for trans-
formations and query. Second, the three flavors it comes in
are: (1) relational-based systems, (2) XML based systems,
and (3) Object-based systems.

This is all well and good, and in my honest opinion EII
has a place in the world, but it still doesn’t solve the fun-
damental problem that I bumped into ten years ago with
that simple little FileMaker Pro database website: the data
structure contains no formal semantics. Sure, the EII folks
will tell you that their internal metadata repositories (they
all have them) contain semantics - and they are right! The
semantics within Brand X EII tool work for exactly Brand
X, no more and no less. You see, software has always had
semantics. Meaning in software has always been in the for
and do loops we write while traversing arrays, or the Y—N
database flags that convey crucially important information
to the business objects doing their chores. Yes, semantics
have always been in code.

So long as semantics are in compiled software, scripts, and
SQL we will forever run into “information interoperability”
problems. Information integration is doable - write enough
code and I will connect every software system anywhere.
But then things change.

It’s like the painters on the Golden Gate Bridge, by the
time they’ve finished rust proofing one span with that mag-
nificent International Orange coat of rust preventing paint
- the other side is withering and they need to start over.
So it goes with integrating IT systems. And so it will go
indefinitely; until the data contains meaning outside of code
and proprietary metadata.

In one sense I could personally care less about what hap-
pens to EII as a market space. I can tell you that federated
query algebras, view management, and query metadata are
irreplaceable contributions for dealing with the structural
aspects of information interoperability. As it may be, I will
predict that either (a) EII will adopt the foundational tech-
nologies of the Semantic Web and survive in name with much
improved adaptive information capabilities, or (b) EII core
technology will gracefully be folded into a new class of soft-
ware built on newer data formats with formal semantics and
strong connections to XML, objects, and relational systems.

Clearly I’ve made the gamble professionally and person-
ally with Network Inference that the formal semantics pro-
vided by the Web Ontology Language (OWL), and the Re-
source Description Framework (RDF) as a part of the W3C
Semantic Web vision will fundamentally change the old rules
of the EII space. Perhaps in retrospect I should have guided
Modulant to more forcefully maintain the distinction be-
tween “our EII” and “Aberdeen’s EII”, but after all, it’s
just a minor semantic difference right?

7. EII: EMBRACE CHAOS, AND THEN GUIDE
IT

Arnon Rosenthal
The MITRE Corporation

arnie@mitre.org

Personal experience
MITRE helps the US government and its contractors to as-
semble vendor products, contractor-produced applications,
and administration processes into giant systems, creating all
sorts of enterprise integration (EI), not just one new inte-
grated view. Like several other presenters, we take broad
EI as the goal. Our consumer-side perspective differs from
most researchers, who ask how to build products. We re-
searchers also provide advice and guidance for the large scale
administration process, e.g., what should a community data
standard include?

Main observations and lessons
In (apparent) decreasing order of popularity, EI techniques
include integrated packages (e.g., SAP), messaging, ware-
houses, and EII (as distributed views). All may exist si-
multaneously, for overlapping subsets of the data. Note the
coincidence – usage seems to be in reverse order of the length
of research history.

EII does not, long term, seem a viable stand-alone prod-
uct. It’s the metadata, stupid! The enterprise’s cost is ad-
ministration, not vendor software, and it is not tolerable to
capture overlapping semantics separately for each product,
or for read, update, annotate, and change- notification. A
vendor who shares metadata with message mediation, ETL,
entity instance resolution and data cleaning offers a much
better package. EII companies should prepare to be assimi-
lated.2

For a large enterprise like the Department of Defense
(DOD), it is also important to share metadata across ven-
dors. The EI community has not eaten its own dogfood –
EI metadata is unintegrated. EI standards (e.g., MOF) are
neither broad nor widely adopted, and do not even address
inter-system relationships. Fortunately, the semantic web
offers promise that the system- and inter-system formalisms
become the same.3 OWL emphasizes ontologies, but the
same transitive relationships can represent matching knowl-
edge and many value derivations, with inference.

The EII community also needs a better story for service
oriented architectures. Our n-tier application systems (e.g.,
Air Force mission planning) emphasize object schemas and
services, seeing data as unintuitive physical tuples in the
basement. But the tiers fulfill their insulation mandate too
well, keeping useful new data captured at one tier invisible
at the others.

EII does not seem popular for mapping data to objects,
despite the high costs (especially testing!) of evolving the
2Semantic matching, and attribute representation conver-
sion also seem unviable, standalone – small benefit and much
interfacing.
3As competition, XML schemas are popular, but seman-
tically weak and terrible when there are disagreements
about whose elements belong on top. UML class diagrams
are sometimes used. Entity-relationship standards (e.g.,
IDEF1X) seem to have only vendor-specific APIs.

785

existing data-to-object mappings. Today, programmers of-
ten code Read, Notify of changes, and Update methods in a
3GL+SQL. EII typically supports the first, but will become
popular only if it helps with the others. It should be possible
to generate Notify methods automatically. Update methods
(e.g., for Java beans) must change the database so the Read
view is suitably updated. These are not terribly complex
business processes, but do require semantic choices, e.g., if
a constraint is violated, should the request abort, or invoke
a repair method? Given the choices, the update method
should be generated automatically.

EII tools that interpret at runtime seem unattractive in
many military settings. Administrators are unavailable in
Iraq, and startups cannot support them 7 x 24, worldwide.
Tools that generate standard code (e.g., SQL, X-languages)
are more attractive.

The strongest case for knowledge-driven EI tools – ease
of change – gets lost in the government’s acquisition pro-
cess. Rather than tell a contractor how to design a system,
the government tries to set testable requirements. But we
do not know how to write ”agility” into contract language.
Research question: Provide ways to measure data integra-
tion agility, either analytically or by experiment. We want
a measure for predictable changes such as adding attributes
or tables, and changing attribute representations.

Going forward: Be proactive

EI has been for passive wimps!4 Most EI research
merely asks how to exchange data that fate supplies, at most
trying to discover it in a wider sphere. But enterprises are
not passive – they fund acquisition of new data-producing
systems, and select and promote data standards. We need to
broaden: from semantic integration to ”semantics manage-
ment,” which also includes actively guiding semantic choices
in new ontologies and systems – e.g., what concepts should
be used as descriptive vocabularies for existing data, or as
definitions for newly built systems.

The broader semantics management perspective requires
many additions to the research agenda. (We present a cou-
ple of highlights here; [8] presents more details.) First,
most prior research assumes that higher authority is either
all powerful (centralized) or absent (peer to peer). There
is a need for research on enterprises, where managers have
partial influence. Our customers have learned from painful
experience that integration progress happens incrementally
by developing and exploiting data standards within focused
communities of interest. What services do communities need
for declaring and influencing standards, and managing and
mapping among large numbers of applications and schemas
(for the U.S. Department of Defense, perhaps O(105)?) Prac-
titioners need researchers to put communities on firmer method-
ological footing.

Finally, as organizations move toward more agile data in-
tegration in loosely coupled environments, there is a need
for tools to manage data supply chains in the face of evolu-
tion and decentralized control. One needs agreements that
capture the obligations of each party in a formal language.
While some obligation conditions are familiar from ISP’s
service level agreements (e.g., availability, payment), others
are more data-specific. For example, the provider may be

4This section was written while on a California sabbatical ,
where I learned the rational style of my governor, Arnie S.

obligated to provide data of a specified quality, and to no-
tify the consumer if reported data changes. The consumer
may be obligated to protect the data, to use it only for a
specified purpose. Data offers opportunities unavailable for
arbitrary services, e.g., detecting if an existing agreement
covers part of your data and automated violation detection
for some conditions [9].

8. THE ROLE OF THE USER IN EII

Vishal Sikka
Vice President, Advanced Technology

SAP
Vishal.Sikka@sap.com

SAP provides enterprises with a wide ranging set of appli-
cations via the mySAP Business suite. This suite provides
customers with best-practices from a wide range of indus-
tries, spanning almost all their major business processes,
spanning a wide range of business users. The foundation
that these applications are built on, and that is used to
integrate the applications with other information assets of
customers, is a platform called SAP NetWeaver [7]. Infor-
mation integration is one of the fundamental contributions
of this platform. I first want to discuss where things stand
with information integration using this platform, and then
want to discuss some open challenges for EII from a specific
perspective, that of the user.

At SAP, we view Enterprise Information Integration as a
goal, not a technology. The goal in this case, is to achieve a
state where the various information assets of the enterprise
are integrated to best meet the needs of the business:

1. Ensuring the consistency of information underpinning
multiple applications.

2. Providing connectivity and accessibility to information
across multiple platforms and databases.

3. Delivering a timely and complete view of critical enti-
ties and events.

A key aspect of our work in this area is to look at informa-
tion integration from an end-user’s perspective. For many
knowledge workers in an enterprise:

1. Work is triggered by tasks or events.

2. Action that follows such a trigger is typically not cov-
ered in traditional business processes

3. Use of e-mails and documents is commonplace.

4. Decisions are typically based on multiple sources such
as business objects within applications, semi-structured
content such as reports and analyses, and unstructured
data such as web pages and documents.

5. Actions are to be taken in multiple enterprise applica-
tions

All this implies looking into several technologies for both
extracting information from, and sending information back
into, multiple applications and data sources over multiple
platforms. SAP’s NetWeaver includes several technologies
towards these:

786

1. Master data management, which enables companies
to store, augment and consolidate master data across
applications.

2. Virtual data federation, which includes techniques for
distributed query processing and metadata mapping
across data sources.

3. Classic business intelligence techniques such as ETL,
provided in the Business Information Warehouse (BW)
component, and messaging or process integration tech-
niques collectively referred to as EAI, provided in the
eXchange Infrastructure (XI) component.

However, measuring the state of EII from the perspective
of the friction a knowledge worker has to endure in getting
to the information they’re after, we still have a long way to
go. A representative problem in this case is something we
refer to as Enterprise Search. The goal of enterprise search
is to enable search across documents, business objects and
structured data in all the applications in an enterprise. Let’s
say a business user, Jamie, needs to find all the information
related to a customer. This information could include the
orders this customer has placed and the products they have
purchased, the status of these orders and the financial infor-
mation associated with the purchases, the service/support
requests they have filed, the sales and support people the
customer has interacted with and the nature of such inter-
actions, the customer’s contact information, past payment
history, credit rating, and other public information on the
customer, such as news stories about the customer, prod-
uct brochures, and so forth. From such a starting point,
Jamie might need to dive into details in any particular di-
rection. EII technologies currently only provide basic abili-
ties to do this. SAP’s own enterprise search service, IBM’s
search technologies such as Masala and Serrano [6], are all
efforts in this direction. However, several open issues remain
to be addressed, including:

1. Addressing needs for diverse data types. Jamie might
be interested in searching for basic information on the
customer, or in drilling down into a detailed analysis
of some structured data associated with the customer,
such as finances. In the current state of EII, techniques
for information retrieval from unstructured data are
significantly different from techniques for structured
data analysis, although some convergences appear to
be on the horizon. A common semantic framework for
integrating retrieval results from algorithms that oper-
ate on different data types continues to be a challenge.

2. User interaction paradigms, or what does EII look like
to the user. Regardless of the application type or
their scenario for interacting with information, end-
users typically don’t make the distinctions between
data sources or data types that we technologists do.
They are usually more interested in performing a task
at hand, based on all the information relevant to that
task. Often the users perform these tasks from stan-
dard desktop interfaces, but they increasingly use cell
phones, PDA type mobile devices, or voice. EII tech-
niques have often neglected such user interaction is-
sues.

3. Common metadata. One of the major research streams
in information integration has been about integrat-
ing metadata, or model management. However, two
factors are contributing to making this an ongoing
challenge. (i) The rate at which information is be-
coming available is increasing rapidly. The rate at
which new sources of data are appearing in an enter-
prise also increasing rapidly, as is the different types
of information that needs to be integrated. Manual or
semi-manual approaches to extracting and integrating
metadata across data sources, are doomed to failure.
(ii) With service-oriented architectures, applications
get disaggregated into services, and the state of infor-
mation availability across business objects and services
reaches an entirely different level of fragmentation.

4. Security. When retrieving information from diverse
sources, ensuring security, e.g. ensuring that only au-
thorized users get access to the information they seek,
continues to be an underserved area.

5. Performance. While significant strides have been made
in improving the performance of such techniques, in-
tegration of large amounts of data, as well as query
and update operations across data, continue to be un-
derserved issues in the enterprise. As well, EII tech-
niques for real-time or near-real-time access to hetero-
geneous information continue to be met with skepti-
cism by the enterprise buyer. Significant additional
activity is needed on both, query optimization and
query execution-time prediction, as well as in iden-
tifying real business scenarios where real-time access
to distributed information is warranted.

9. REFERENCES
[1] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve,

and J. B. R. Jr. Query processing in a system for
distributed databases (sdd-1). ACM Trans. Database
Syst., 6(4):602–625, 1981.

[2] D. Draper, A. Y. Halevy, and D. S. Weld. The nimble
integration system. In Proc. of SIGMOD, 2001.

[3] L. Haas, D. Kossmann, E. Wimmers, and J. Yang.
Optimizing queries across diverse data sources. In
Proc. of VLDB, Athens, Greece, 1997.

[4] D. Maluf, D. Bell, and N. Ashish. Len middleware.
2005.

[5] D. Maluf and P. Tran. Netmark: A schema-less
extension for relational databases for managing
semi-structured data dynamically. 2003.

[6] www-306.ibm.com/software/data/integration/db2ii/.

[7] www.sap.com/solutions/netweaver/index.epx.

[8] A. Rosenthal, L. Seligman, and S. Renner. From
semantic integration to semantics management: Case
studies and a way forward. ACM SIGMOD Record,
December 2004.

[9] L. Seligman, A. Rosenthal, and J. Caverlee. Data
service agreements: Toward a data supply chain. In
Proceedings of the Information Integration on the Web
workshop at the Very Large Database Conference,
Toronto, 2004.

[10] M. Stonebraker. Too much middleware. ACM
SIGMOD Record, 31:97–106, 2002.

787

