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Abstract

Theproblemof answeringqueriesusingviews is
to find efficientmethodsof answeringa queryus-
ing asetof previouslymaterializedviewsoverthe
database,ratherthanaccessingthedatabaserela-
tions. Theproblemhasreceivedsignificantatten-
tion becauseof its relevanceto a wide variety of
datamanagementproblems,suchasdataintegra-
tion, queryoptimization,andthe maintenanceof
physicaldataindependence.To date,the perfor-
manceof proposedalgorithmshasreceived very
little attention,andin particular, their scaleup in
the presenceof a large numberof views is un-
known.

We first analyze two previous algorithms, the
bucket algorithmandthe inverse-rulesalgorithm,
andshow their deficiencies.We thendescribethe
MiniCon algorithm, a novel algorithm for find-
ing the maximally-containedrewriting of a con-
junctive query using a set of conjunctive views.
We presentthe first experimentalstudy of algo-
rithms for answeringqueriesusing views. The
studyshowsthattheMiniCon algorithmscalesup
well andsignificantlyoutperformsthepreviousal-
gorithms.Finally, wedescribeanextensionof the
MiniCon algorithm to handlecomparisonpredi-
cates,andshow its performanceexperimentally.

�
Thanks to Daniela Florescu,Marc Friedman,Zack Ives, Ioana

Manolescu,Dan Weld, and Steve Wolfman for their commentson ear-
lier draftsof this paper. This researchwasfundedby a SloanFellowship,
NSF Grant#IIS-9978567,a NSF GraduateResearchFellowship, anda
LucentTechnologiesGRPWGrant

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedingsof the 26th VLDB Conference,
Cairo, Egypt, 2000.

1 Intr oduction

The problem of answeringqueries using views (a.k.a.
rewriting queriesusing views) hasrecently received sig-
nificant attentionbecauseof its relevanceto a wide vari-
ety of datamanagementproblems[20]: query optimiza-
tion [6, 21, 36], maintenanceof physical data indepen-
dence[35, 33, 27], dataintegration[22, 9, 18, 19], anddata
warehouseandweb-sitedesign[16, 32]. Informally speak-
ing, the problemis the following. Supposewe aregiven
a query

�
over a databaseschema,anda setof view def-

initions �����	�
�
�
�
��� over the sameschema. Is it possible
to answerthequery

�
usingonly theanswersto theviews

�����	�
�
�
�
��� , andif so,how?
Thereare two main contexts in which the problemof

answeringqueriesusing views has beenconsidered. In
the first context, wherethe goal is query optimizationor
maintenanceof physicaldataindependence[35, 33, 6], we
searchfor anexpressionthatusestheviews andis equiva-
lent to the original query. Hereit is usuallyassumedthat
the numberof views is on the sameorder as the size of
theschema.Thesecondcontext is thatof dataintegration,
whereviews describea set of autonomousheterogenous
datasources.A userposesa queryin termsof a mediated
schema,andthedataintegrationsystemneedsto reformu-
latethequeryto refer to thedatasources.In a subsequent
phase,the queriesover the sourcesareoptimizedandex-
ecuted. The reformulationproblemcan be solved by al-
gorithmsfor answeringqueriesusingviews,thoughin this
context, we usuallycannotfind a rewriting that is equiva-
lent to theuserquerybecauseof thedatasources’limited
coverage. Instead,we searchfor a maximally-contained
rewriting, which providesthe bestanswerpossible,given
theavailablesources.Whenthequeryandviews arecon-
junctive(i.e.,select-project-join)withoutcomparisonpred-
icates,themaximally-containedrewriting is aunionof con-
junctive queriesover theviews. Thekey challengein this
context is to developanalgorithmthatscalesupin thenum-
berof views.

We consider the problem of answeringconjunctive
queriesusing a set of conjunctive views in the presence
of a large numberof views. In general,this problemis
NP-Completebecauseit involvessearchingthrougha pos-
sibly exponentialnumberof rewritings[21]. Previouswork
has mainly consideredtwo algorithms for this purpose.
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Thebucketalgorithm,developedaspartof theInformation
Manifold



System[22], controlsits searchby first consid-
eringeachsubgoalin thequeryin isolation,andcreatinga
bucket thatcontainsonly theviews thatarerelevantto that
subgoal.Thealgorithmthencreatesrewritingsby combin-
ing oneview from every bucket. As we show, the com-
binationstephasseveral deficiencies,anddoesnot scale
up well. The inverse-rulesalgorithm,developedprimarily
in theInfoMasterSystem [29, 8], considersrewritings for
eachdatabaserelationindependentof any particularquery.
Givenauserquery, theserewritingsarecombinedappropri-
ately. Weshow thattherewritingsproducedby theinverse-
rulesalgorithmneedto befurtherprocessedin orderto be
appropriatefor queryevaluation.Unfortunately, in this ad-
ditionalprocessingstepthealgorithmmustduplicatemuch
of the work donein the secondphaseof the bucket algo-
rithm.

Basedon the insightsinto the previous algorithms,we
introducethe MiniCon algorithm, which addressestheir
limitationsandscalesup to a largenumberof views. The
key ideaunderlyingtheMiniCon algorithmis a changeof
perspective: insteadof building rewritings by combining
rewritings for eachquerysubgoalor databaserelation,we
considerhow eachof the variables in thequerycaninter-
actwith the availableviews. The result is that the second
phaseof the MiniCon algorithmneedsto considerdrasti-
cally fewercombinationsof views. Hence,aswe show ex-
perimentally, theMiniCon algorithmscalesupmuchbetter.
Thespecificcontributionsof thepaperarethefollowing:� WedescribetheMiniCon algorithmandits properties.� We presenta detailed experimentalevaluation and

analysisof algorithms for answeringqueriesusing
views. The experimentalresultsshow (1) the Mini-
Con algorithm significantly outperformsthe bucket
and inverse-rulesalgorithms,(2) the MiniCon algo-
rithm scalesupto hundredsof views,therebyshowing
for the first time that answeringqueriesusingviews
canbe efficient on large scaleproblems.We believe
that our experimentalevaluationin itself is a signifi-
cantcontribution thatfills a void in previouswork on
this topic.� We describean extensionof the MiniCon algorithm
to handlecomparisonpredicatesandexperimentalre-
sultson its performance.

Thispaperfocuseson theproblemof answeringqueries
usingviewsfor select-project-joinqueriesundersetseman-
tics. While suchqueriesare quite commonin datainte-
gration applications,many applicationswill needto deal
with queriesinvolving grouping and aggregation, semi-
structureddata,nestedstructuresandintegrity constraints.
Indeed,theproblemof answeringqueriesusingviews has
beenconsideredin thesecontexts as well [15, 31, 7, 13,
26, 4, 10, 14]. In contrastto theseworks,our focusis on
obtaininga scalablealgorithm for answeringqueriesus-
ing views and the experimentalevaluationof suchalgo-
rithms. Hence,we begin with the classof select-project-
join queries.

The paperis organizedas follows. Section2 presents
the problemformally, andSection3 discussesthe limita-
tions of the previous algorithms. Section4 describesthe
MiniCon algorithm,andSection5 presentstheexperimen-
tal evaluation. Section6 describesan extensionof the
MiniCon algorithm to comparisonpredicates. Section7
discussesrelatedwork andSection8 concludes.

2 Preliminaries
Queries and views: We considerthe problemof answer-
ing queriesusingviewsfor conjunctive queries (i.e.,select-
project-joinqueries).A conjunctive query hastheform:�������� :- � � ���� � � �
�	�
�
�	� � ���� � �
where � and � � �
�
�	���
� � are predicatenames. The atoms
� � ���� � � �	�
�
�	�
� � ���� � � are the subgoals in the body of the
query, where � � �
�	�
�	�
� � refer to databaserelations. The
atom ��� ���� is calledthehead of thequery, andrefersto the
answerrelation. The tuples �� � �� � �
�
�	�
� �� � containeither
variablesor constants.We requirethat the querybe safe,
i.e., that ���� �� ��� �
�	�!� �� � (that is, every variablethat
appearsin the headmust also appearin the body). The
variablesin �� arethedistinguished variablesof thequery,
andall the othersareexistential variables.We denotein-
dividual variablesby lowercaseletters. We use �#"	$!% � � �
( &('*),+(-."0/1% � � � ) to referto thesetof variables(subgoals)in�

, and
� �32 � to refer to the resultof evaluatingthequery�

over thedatabase2 .
Note that unionscan be expressedin this notationby

allowing a setof conjunctive querieswith the samehead
predicate.A view is a namedquery. If the query results
are stored,we refer to them as a materializedview, and
we refer to the resultsetasthe extension of the view. In
Section6 we considerqueriesthat containsubgoalswith
comparisonpredicates4 , 5 , 67 . In this case,we require
that if a variable 8 appearsin a subgoalof a comparison
predicate,then8 mustalsoappearin anordinarysubgoal.

Example2.1 Considerthe following schemathat we use
throughoutthe paper. The relation cites(p1,p2) stores
pairsof publicationidentifierswherep1 citesp2. Therela-
tion sameTopic storespairsof papersthatareon thesame
topic. The unaryrelationsinSIGMOD and inVLDB store
ids of paperspublishedin SIGMOD and VLDB respec-
tively. Thefollowing queryasksfor pairsof paperson the
sametopic that alsocite eachother. Note that join predi-
catesin thisnotationareexpressedby multipleoccurrences
of thesamevariables.
q(x,y):- sameTopic(x,y), cites(x,y), cites(y,x) 9
Query containment and equivalence: The conceptsof
querycontainmentandequivalenceenableus to compare
betweenqueriesandrewritings. We saythata query

� � is
contained in thequery

�;:
, denotedby

� �=< �;: , if thean-
swerto

� � is asubsetof theanswerto
�>:

for any database
instance.Wesaythat

� � and
�;:

areequivalent if
� �?< �>:

and
�;: < � � .

Containment mappings provide a necessaryand suffi-
cientconditionfor testingquerycontainment.A mapping
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@ from �#"	$!% � � : � to �#"	$!% � � � � is a containmentmapping
if (1) @ mapsevery subgoalin thebodyof

� :
to a subgoal

in the body of
� � , and(2) @ mapsthe headof

� :
to the

headof
� � . Thequery

� :
contains

� � if andonly if there
is a containmentmappingfrom

�;:
to
� � [5].

Givenapartialmapping@ onthevariablesof aquery, we
extendit in theobviousmannerto applyto setsof variables
andto subgoalsof thequery(whenall thevariablesof the
subgoalare in the domainof @ ). A conjunctive query is
saidto beredundant if it is possibleto removesomeof its
subgoalsandobtainanequivalentquery.
Answering queries using views: Given a query

�
anda

setof view definitionsA 7 � � �
�	�
�
�	�0B , a rewriting of the
queryusingtheviewsis aqueryexpression

�;C
whosebody

predicatesareeither � � �
�	�
�	�
��B or comparisonpredicates.
We distinguishbetweentwo typesof queryrewritings:

equivalent rewritings, thatareusedin thecontextsof query
optimizationandthemaintenanceof physicaldataindepen-
dence,andmaximally-contained rewritings, thatareusedin
thecontext of dataintegration.

Definition 2.1 (equivalent rewriting ) Let
�

be a query,
and A 7 � � �	�
�	�
�
� � bea setof views,bothover thesame
databaseschema.Thequery

�;C
is anequivalentrewriting

of
�

usingA if for any database2 , theresultof evaluating� C
over ��� �32 � �	�
�
�	�
��� �,2 � is thesameas

� �32 � . 9
Example2.2 Considerthe query from Example2.1 and
the following views. The view V1 storespairsof papers
that cite eachother, andV2 storespairsof paperson the
sametopicandeachof whichcitesat leastoneotherpaper.

Q(x,y):- sameTopic(x,y), cites(x,y), cites(y,x)
V1(a,b):- cites(a,b), cites(b,a)
V2(c,d) :- sameTopic(c,d), cites(c,c1), cites(d,d1)
Thefollowing is anequivalentrewriting of

�
:

Q’(x,y):- V1(x,y), V2(x,y) .

To checkthatQ’ is an equivalentrewriting, we unfold the
view definitionsto obtainQ”, andshow that Q is equiva-
lent to Q”, usinga containmentmapping(in this casethe
identitymappingexceptfor x1 D y, y1 D x ).

Q”(x,y):- cites(x,y), cites(y,x), sameTopic(x,y),
cites(x,x1), cites(y,y1) 9

Data Integration: Oneof themainusesof algorithmsfor
answeringqueriesusingviews is in thecontext of datain-
tegrationsystemsthat provide their userswith a uniform
interfaceto a multitude of datasources[22, 18, 12, 19].
Usersposequeriesin termsof a mediated schema, which
is asetof relationsdesignedto capturethesalientaspectsof
theapplication.Thedata,however, is storedin thesources.
In order to be ableto translateusers’queriesinto queries
on thedatasources,thedataintegrationsystemneedsade-
scription of the contentsof the sources. One of the ap-
proachesto specifyingsuchdescriptionsis to describea
datasourceasa view over the mediatedschema,specify-
ing which tuplescanbefoundin thesource.For example,

in our domain,we mayhave two datasources,S1 andS2,
containingpairsof SIGMOD (respectively VLDB) papers
that cite eachother. The sourcescanbe describedasfol-
lows:

S1(a,b):- cites(a,b), cites(b,a), inSIGMOD(a),
inSIGMOD(b)

S2(a,b):- cites(a,b), cites(b,a), inVLDB(a),
inVLDB(b)

Givena query
�

, thedataintegrationsystemfirst needs
to reformulate

�
to referto thedatasources,i.e.,theviews.

Therearetwo differencesbetweenthis applicationof an-
sweringqueriesusingviewsandthatconsideredin thecon-
text of queryoptimization.First, theviewsherearenot as-
sumedto containall the tuplesin their definitionsincethe
datasourcesaremanagedautonomously. For example,the
sourceS1 may not containall the pairsof SIGMOD pa-
persthatcite eachother. Second,wecannotalwaysfind an
equivalentrewriting of the queryusingthe views because
theremaybe no datasourcesthat containall of the infor-
mationthequeryneeds.Instead,we considertheproblem
of finding a maximally-containedrewriting, as illustrated
below.

Example2.3 Continuingwith our example,assumingwe
have thedatasourcesdescribedby S1, S2 andV2 andthe
samequery � , thebestrewriting we cangenerateis:
q’(x,y):- S1(x,y), V2(x,y)
q’(x,y):- S2(x,y), V2(x,y)

Notethatthisrewriting is aunionof conjunctivequeries,
describingmultiple waysof obtaininganswerto thequery
from theavailablesources.Therewriting is not anequiva-
lent rewriting, sinceit missesany pair of papersthatis not
bothin SIGMODor bothin VLDB, but wedon’t havedata
sourcesto provide us suchpairs. Furthermore,sincethe
sourcesarenotguaranteedto haveall thetuplesin thedefi-
nition of theview, our rewritingsneedto considerdifferent
views thatmayhavesimilar definitions.For example,sup-
posewehave thefollowing sourceS3:
S3(a,b):- cites(a,b), cites(b,a), inSIGMOD(a),

inSIGMOD(b)
Thedefinitionof S3 is identicalto thatof S1, however,

becauseof sourceincompleteness,it maycontaindifferent
tuplesthanS1. Hence,our rewriting will alsohave to in-
cludethefollowing in additionto theothertwo rewritings.

q’(x,y):- S3(x,y), V2(x,y) 9
Maximally-containedrewritings aredefinedw.r.t. a partic-
ular querylanguagein which we expressrewritings. Intu-
itively, themaximally-containedrewriting is onethatpro-
videsall theanswerspossiblefrom a givensetof sources.
Formally, they aredefinedasfollows.

Definition 2.2 (maximally-contained rewriting ) The
query

�;C
is a maximally-containedrewriting of a query

�
usingtheviews A 7 � � �
�
�	�
�	� � w.r.t. a querylanguageE
if
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1. for any database2 , andextensionsF � �
�	�
���3F � of the
views suchthat FHG � �0G �,2 � , for IJ5LKM5ON , then�;C � F � �
�	�
���3F � �*� � �,2 � for all K

2. thereis no other query
� � in the languageE , such

for every database2 and extensionsF � �
�
�	�
�3F � as
above (1)

�>C � F � �	�
�
�
�,F � �P� � � � F � �
�
�	���,F � � and(2)� � � F � �
�	�
���3F � �Q� � �,2 � , andthereexistsat leastone
databasefor which (1) is astrict subset. 9

Given a conjunctive query
�

and a setof conjunctive
views A , themaximally-containedrewriting of a conjunc-
tive querymaybea unionof conjunctivequeries(we refer
to theindividual conjunctivequeriesasconjunctive rewrit-
ings). Whenthequeriesandtheviews areconjunctiveand
do not containcomparisonpredicates,it follows from [21]
that we needonly considerconjunctive rewritings

�;C
that

haveatmostthenumberof subgoalsin thequery
�

.

Remark 1 It is importantto emphasizeat this point that
the definitionsconsideredin this sectiononly ensurethat
therewriting of thequeryobtainsasmany answersaspos-
siblefrom a setof views,which is themainconcernin the
context of dataintegration.Wearenotconsideringherethe
problemof finding the rewriting that yields the cheapest
queryexecutionplan over the views, which would be the
mainconcernwhenusingalgorithmsfor answeringqueries
using views for query optimization and maintenanceof
physicaldataindependence.In theconcludingsectionwe
revisit this issue. In addition,we do not considerherethe
issueof orderingtheresultsfrom thesources. 9
3 Previous Algorithms
The theoretical results on answering queries using
views[21] showedthatwhentherearenocomparisonpred-
icatesin the query, the searchfor a maximally-contained
rewriting canbe confinedto a finite space:an algorithm
needsto considerevery possibleconjunctionof N or less
view atoms, where N is the numberof subgoalsin the
query. Two previousalgorithms,thebucket algorithmand
the inverse-rulesalgorithm,attemptedto find moreeffec-
tivemethodsto producerewritingsthatdonot requiresuch
exhaustivesearch.In this sectionwe briefly describethese
algorithmsandpoint out their limitations. In Section5 we
comparethesealgorithmsto our MiniCon algorithm and
show thattheMiniCon algorithmsignificantlyoutperforms
them. We describethe algorithmsfor queriesandviews
withoutcomparisonsubgoals.

3.1 The Bucket Algorithm

The bucket algorithmwasdevelopedaspart of the Infor-
mationManifold System[22]. Thekey ideaunderlyingthe
bucketalgorithmis thatthenumberof queryrewritingsthat
needto beconsideredcanbedrasticallyreducedif we first
considereachsubgoalin the queryin isolationanddeter-
minewhichviewsmayberelevantto a particularsubgoal.

We illustrate the bucket algorithm with the following
queryandviews. Note that the querynow only asksfor
a setof papers,ratherthanpairsof papers.

Q1(x) :- cites(x,y),cites(y,x),sameTopic(x,y)
V4(a) :- cites(a,b), cites(b,a)
V5(c,d) :- sameTopic(c,d)
V6(f,h) :- cites(f,g),cites(g,h),sameTopic(f,g)

In thefirst step,thebucketalgorithmcreatesabucketfor
eachsubgoalin Q1. The bucket for a subgoal+ contains
theviews that includesubgoalsto which + canbemapped
in arewriting of thequery. If asubgoal+ unifieswith more
than one subgoalin a view � , then the bucket of + will
containmultiple occurrencesof � . The bucket algorithm
wouldcreatethefollowing buckets:

cites(x,y) cites(y,x) sameTopic(x,y)
V4(x) V4(x) V5(x,y)

V6(x,y) V6(x,y) V6(x,y)
Note that it is possibleto unify the subgoalcites(x,y)

in the query with the subgoalcites(b,a) in V4, with the
mappingx D b, y D a. However, the algorithmdid not
include the entry V4(y) in the bucket becauseit requires
thateverydistinguishedvariablein thequerybemappedto
a distinguishedvariablein theview.

In the secondstep, for eachelementof the Cartesian
productof thebuckets,thealgorithmconstructsa conjunc-
tiverewriting andcheckswhetherit is contained(or canbe
madeto be contained)in the query. If so, the rewriting is
addedto theanswer. Hence,theresultof thebucket algo-
rithm is aunionof conjunctiverewritings.

In our example,the algorithm will try to combineV4
with theotherviewsandfail (asweexplainbelow). Thenit
will considertherewritings involving V6, andnotethatby
equatingthevariablesin theheadof V6 acontainedrewrit-
ing is obtained.Finally, thealgorithmwill alsonotethatV6
andV5 canbecombined.Thoughnot originally described
aspartof thebucket algorithm,it is possibleto addanad-
ditional simplecheckthatwill determinethat theresulting
rewriting will beredundant(becauseV5 canberemoved).
Hence,theonly rewriting in thisexample(whichalsoturns
out to beanequivalentrewriting) is:
Q1’(x) :- V6(x,x)

Themain inefficiency of the bucket algorithmis that it
missessomeimportantinteractionsbetweenview subgoals
by consideringeachsubgoalin isolation. As a result, the
bucketscontainirrelevantviews,andhencethesecondstep
of thealgorithmbecomesveryexpensive.Weillustratethis
pointon our example.

Considerthe view V4, and supposethat we decideto
useV4 in suchaway thatthesubgoalcites(x,y) is mapped
to thesubgoalcites(a,b) in theview, asshown below:

Q1(x) :- cites(x,y),cites(y,x), SameTopic(x,y)R R
?

V4(a) :- cites(a,b)cites( b,a)

However, thevariableb doesnot appearin theheadof
V4, andtherefore,if we useV4, thenwe will not be able
to apply the join predicatebetweencites(x,y) andSame-
Topic(x,y) in thequery. Therefore,V4 is notusablefor the
query, but thebucketalgorithmwouldnot discover this.

Furthermore,even if the querydid not containSame-
Topic(x,y), thebucketalgorithmwouldnot realizethatif it
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usesV4, thenit hasto useit for both of thequerysubgoals.
RealizingS this would save the algorithmexploring useless
combinationsin thesecondphase.

As we explain later, the MiniCon algorithm discovers
theseinteractions.In thisexample,MiniConwill determine
thatV4 is irrelevant to thequery. In thecasein which the
querydoesnot containthe subgoalSameTopic(x,y), the
MiniCon algorithmwill discoverthatthetwo cite subgoals
needto betreatedatomically.

3.2 The Inverse-RulesAlgorithm

Like thebucket algorithm,theinverse-rulesalgorithm[29,
8] wasalsodevelopedin the context of a dataintegration
system.The key ideaunderlyingthe algorithmis to con-
struct a set of rules that invert the view definitions, i.e.,
rulesthatshow how to computetuplesfor thedatabasere-
lations from tuplesof the views. Given the views in the
previous example,the algorithmwould constructthe fol-
lowing inverserules:

R1: cites(a, f1(a)) :- V4(a)
R2: cites(f1(a), a) :- V4(a)
R3: sameTopic(c,d) :- V5(c,d)
R4: cites(f, f2(f,h)) :- V6(f,h)
R5: cites(f2(f,h), h) :- V6(f,h)
R6: sameTopic(f, f2(f,h)) :- V6(f,h)

ConsidertherulesR1andR2; intuitively, theirmeaning
is thefollowing. A tupleof theform (p1) in theextension
of the view V4 is a witnessof two tuplesin the relation
cites. It is awitnessin thesensethatit tells thattherelation
cites containsa tupleof the form (p1, Z), for somevalue
of Z, andthattherelationalsocontainsa tupleof theform
(Z, p1), for thesame valueof Z.

In order to expressthe information that the unknown
valueof Z is thesamein thetwo atoms,wereferto it using
the functionalSkolem term f1(Z). Note that theremay be
severalvaluesof Z in thedatabasethatcausethetuple(p1)
to be in the self-join of cites, but all thatwe know is that
thereexistsat leastonesuchvalue.

The rewriting of a query
�

usingthe setof views A is
simply the compositionof

�
andthe inverserulesfor A .

Hence,oneof theimportantadvantagesof thealgorithmis
that the inverserulescanbe constructedaheadof time in
polynomialtime, independentof aparticularquery.

Therewritingsproducedby theinverse-rulesalgorithm,
asoriginally describedin [8], arenot appropriatefor query
evaluationfor two reasons.First,applyingtheinverserules
to theextensionof theviewsmayinvertsomeof theuseful
computationdoneto producethe view. Second,we may
endup accessingviews thatareirrelevantto thequery. To
illustratethefirst point, supposewe usetherewriting pro-
ducedby the inverse-rulesalgorithmin thecasewherethe
view V6 hastheextensionT (p1, p1), (p2,p2) U .

First, we would apply the inverserules to the exten-
sionsof the views. Applying R4 would yield cites(p1,
f2(p1,p1)), cites(p2, f2(p2,p2)), and similarly applying
R5 andR6 wouldyield thefollowing tuples:

cites(p1, f2(p1,p1)),
cites(f2(p1,p1),p1),
cites(f2(p2,p2),p2),
sameTopic(p1,p1),
sameTopic(p2,p2).

Applying the query Q1 to the tuplescomputedabove
obtainsthe answersp1 andp2. However, this computa-
tion is highly inefficient. Insteadof directly usingthe tu-
plesof V6 for theanswer, the inverse-rulesalgorithmfirst
computedtuplesfor therelationcites, andthenhadto re-
computethe self-join of cites that wasalreadycomputed
for V6. Furthermore,if theextensionsof theviewsV4 and
V5 are not empty, thenapplying the inverserules would
produceuselesstuplesasexplainedin Section3.1.

Hence,beforewe canfairly comparethe inverse-rules
algorithmto theothers,weneedto furtherprocesstherules.
Specifically, weneedto expandthequerywith everypossi-
ble combinationof inverserules. However, expandingthe
querywith theinverserulesturnsout to repeatmuchof the
work donein thesecondphaseof thebucketalgorithm.

In the experimentsdescribedin Section5 we consider
anextendedversionof theinverse-rulesalgorithmthatpro-
ducesaunionof conjunctivequeriesby expandingthedef-
initions of the inverserules. We expandedthesubgoalsof
the query one at a time, so we could stop an expansion
of thequeryat themomentwhenwe detectthata unifica-
tion for a subsetof the subgoalswill not yield a rewriting
(therebyoptimizing the performanceof the inverse-rules
algorithm). We show that the inverse-rulesalgorithmcan
perform much better than the bucket algorithm, but the
MiniCon algorithm scalesup significantly betterthanei-
theralgorithm.

4 The MiniCon Algorithm

The MiniCon algorithmbegins like the bucket algorithm,
consideringwhich views containsubgoalsthatcorrespond
to subgoalsin thequery. However, oncethealgorithmfinds
a partial mappingfrom a subgoal+ in the queryto a sub-
goal +V� in a view � , it changesperspective and looks at
thevariablesin thequery. Thealgorithmconsidersthejoin
predicatesin thequeryandfindstheminimaladditionalset
of subgoalsthatneedto bemappedto subgoalsin � , given
that + will bemappedto + � . This setof subgoalsandmap-
ping informationis calleda MiniCon Description (MCD),
andcanbe viewed asa generalizationof buckets. In the
secondphase,the algorithmcombinesthe MCDs to pro-
ducetherewritings. It is importantto notethatbecauseof
the way we constructthe MCDs, the MiniCon algorithm
doesnot requirecontainmentchecksin the secondphase,
giving it anadditionalspeedupcomparedto thebucket al-
gorithm. Section4.1 describestheconstructionof MCDs,
andSection4.2describesthecombinationstep.Theproof
of correctnessof thealgorithmis omittedfor lackof space,
but is describedin thefull versionof thispaper[28].
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4.1 Forming the MCDs

We begin by introducinga few termsthat areusedin the
descriptionof the algorithm. Given a mapping @ from
�#"	$!% � � � to �#"	$!% � � � , we saythata view subgoal+ � cov-
ers a querysubgoal+ if @ � + � 7 + � .

A MCD is a mappingfrom a subsetof the variables
in the query to variablesin oneof the views. Intuitively,
a MCD representsa fragmentof a containmentmapping
from the queryto the rewriting of the query. The way in
which we constructthe MCDs guaranteesthat thesefrag-
mentscanlaterbecombinedseamlessly.

As seenin our example,we needto considermappings
from thequeryto specializationsof theviews,wheresome
of theheadvariablesmayhavebeenequated(e.g.,V6(x,x)
insteadof V6(x,y) in our example). Hence,every MCD
has an associatedhead homomorphism. A headhomo-
morphism W on a view � is a mapping W from �#"	$!% � � �
to �X"	$!% � � � that is the identity on the existential vari-
ables,but mayequatedistinguishedvariables,i.e., for ev-
ery distinguishedvariable 8 , W � 8 � is distinguished,and
W � 8 � 7 W � W � 8 �Y� . Formally, wedefineMCDsasfollows.

Definition 4.1 (MiniCon Descriptions) A MCD Z for
a query

�
over a view � is a tuple of the form� W�[=�	� � �\]� [=�	^_[=�
`>[ � where:� W [ is aheadhomomorphismon � ,� � ���\�� [ is the resultof applying W [ to � , i.e., �\ 7

W�[ �*�a � , where �a aretheheadvariablesof � ,� ^_[ is a partial mapping from �X"	$!% � � � to
W�[ � ��"	$�% � � �b�� `>[ is asubsetof thesubgoalsin

�
whicharecovered

by somesubgoalin W�[ � � � andthemappinĝ_[ (note:
notall suchsubgoalsarenecessarilyincludedin `>[ ).

9
In words, ^_[ is a mappingfrom

�
to the specializa-

tion of � obtainedby theheadhomomorphismW�[ . `>[ is
a setof subgoalsof

�
that we cover by the mapping ^_[ .

Property1 below specifiestheexactconditionswe needto
considerwhenwedecidewhichsubgoalsto includein ` [ .
Note that � ���\�� [ is uniquelydeterminedby the otherel-
ementsof a MCD, but is part of a MCD specificationfor
clarity in our subsequentdiscussions.Furthermore,theal-
gorithmwill not considerall the possibleMCDs but only
thosein which W�[ is the leastrestrictive headhomomor-
phism necessaryin order to unify subgoalsof the query
with subgoalsin a view.

The mapping ^�[ of a MCD Z may mapa setof vari-
ablesin

�
to the samevariablein W�[ � � � . In our discus-

sion, we sometimesneedto refer to a representative vari-
ableof sucha set. For eachsuchsetof variablesin

�
we

choosea representative variablearbitrarily, exceptthatwe
choosea distinguishedvariablewhenever possible.For a
variable8 in

�
, cXZ�dVe � 8 � denotestherepresentativevari-

ableof thesetto which 8 belongs.cXZ�dVe � 8 � is definedto
betheidentity on any variablethatis not in

�
.

Theconstructionof theMCDsis basedonthefollowing
observationon thepropertiesof queryrewritings.

procedureformMCDs( f;gih )
/ j�f andh areconjunctive queries.j /kmlon

.
For eachsubgoalp�qmf

For view rJqXh andevery subgoals�qtr
Let u betheleastrestrictive headhomomorphismon r

suchthatthereexistsa mappingv , s.t. v�wxp!y l uzwxs!y .
If u andv exist, thenaddto

k
any new MCD {

thatcanbeconstructedwhere:
(a) v}| (resp. uH| ) is anextensionof v (resp.u ),
(b) ~ | is theminimalsubsetof subgoalsof f suchthat~�| , v}| and u0| satisfyProperty1, and
(c) it is notpossibleto extendv and u to anMCD that

coversfewer subgoalsthan ~ | .
Return

k
Figure1: Firstphaseof theMiniCon algorithm:FormingMCDs.
Note that condition(b) minimizes ~=� given a choiceof u | andv}| , andis thereforenot redundantwith condition(c).

V( �\ ) h ^ G
V5(c,d) c D c, d D d x D c, y D d 3
V6(f,f) f D f, h D f x D f, y D f 1,2,3

Figure2: MCDs formedaspartof our example

Property 1 Let Z be a MCD for
�

over � . Then Z can
only be used in a non-redundant rewriting of

�
if the fol-

lowing conditions hold:
C1. For each head variable 8 of

�
which is in the domain

of ^_[ , ^�[ � 8 � is a head variable in W0[ � � � .
C2. If ^ [ � 8 � is an existential variable in W [ � � � , then

for every + , subgoal of
�

, that includes 8 (1) all
the variables in + are in the domain of ^ [ , and (2)
^ [ � + �*� W [ � � �

ClauseC1is thesameasin thebucketalgorithm.Clause
C2 capturesthe intuition we illustrated in our example,
whereif a variable 8 is part of a join predicatewhich is
not enforcedby theview, then8 mustbein theheadof the
view so the join predicatecanbe appliedby anothersub-
goalin therewriting. In ourexample,clauseC2wouldrule
out the useof V4 for queryQ1 becausethe variableb is
not in the headof V4, but the join predicatewith Same-
Topic(x,y) hasnotbeenappliedin V4.

The algorithmfor creatingthe MCDs is shown in Fig-
ure1. Considertheapplicationof thealgorithmto our ex-
amplewith the queryQ1 andthe views V4, V5, andV6.
TheMCDs thatwill becreatedareshown in Figure2.

We first considerthe subgoalcites(x,y) in the query.
As discussedabove, thealgorithmdoesnot createa MCD
for V4 becauseclauseC2 of Property1 would beviolated
(thepropertywould requirethatV4 alsocover thesubgoal
sameTopic(x,y) sinceb is existentialin V4 ). For thesame
reason,noMCD will becreatedfor V4 evenwhenwecon-
sidertheothersubgoalsin thequery.

In a sense,the MiniCon algorithm shifts someof the
work doneby thecombinationstepof thebucketalgorithm
to the phaseof creatingthe MCDs. The bucket algorithm
will discoverthatV4 is notusablefor thequerywhencom-
biningthebuckets.However, thebucketalgorithmneedsto
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discoverthismany times(eachtime it considersV4 in con-
junction� with anotherview), andevery time it doesso, it
usesa containmentcheck,which is muchmoreexpensive.
Hence,asweshow in thenext section,with alittle moreef-
fort spentin thefirst phase,theoverall performanceof the
MiniCon algorithmoutperformsthe bucket algorithmand
theinverse-rulesalgorithm.

Remark 2 (covered subgoals) WhenweconstructaMCD
Z , we mustdeterminethesetof subgoalsof thequery ` [
that are coveredby the MCD. The algorithm includesin
` [ only the minimal set of subgoalsthat are necessary
in order to satisfy Property1. To seewhy this is not an
obviouschoice,supposewe have the following queryand
views:
Q1’(x) :- cites(x,y),cites(z,x), inSIGMOD(x)
V7(a) :- cites(a,b),inSIGMOD(a)
V8(c) :- cites(d,c),inSIGMOD(c)

One can also consider including the subgoal in-
SIGMOD(x) in the setof coveredsubgoalsfor the MCD
for both V7 andV8, becausex is in the domainof their
respective variablemappingsanyway. However, our algo-
rithm will not includeinSIGMOD(x), andwill insteadcre-
ateaspecialMCD for it.

Thereasonfor ourchoiceis thatit enablesusto focusin
thesecondphaseonly on rewritings wheretheMCD cover
mutually exclusive setsof subgoalsin thequery, ratherthan
overlappingsubsets.This yields a more efficient second
phase. 9
4.2 Combining the MCDs

Our methodfor constructingMCDs paysoff in thesecond
phaseof thealgorithm,wherewe combineMCDs to build
theconjunctiverewritings. In this phasewe considercom-
binationsof MCDs,andfor eachvalid combinationwecre-
ateaconjunctiverewriting of thequery. Thefinal rewriting
is a unionof conjunctivequeries.

The following propertystatesthat the MiniCon algo-
rithm needonly considercombinationsof MCDsthatcover
pairwisedisjoint subsetsof subgoalsof thequery:

Property 2 Given a query
�

, a set of views A , and the set
of MCDs � for

�
over the views in A , the only combinations

of MCDs that can result in non-redundant rewritings of
�

are of the form Z � �
�	�
�	�
Z�� , where
D1. `>[*���t�
�
�z�m`>[�� 7 &('Q)�+(-."0/i% � � � , and
D2. for every KX67M� , `>[_�(�t`>[(� 7�� .

The fact that we only needto considersetsof MCDs
thatprovide partitionsof the subgoalsin the querydrasti-
cally reducesthe searchspaceof the algorithm. Further-
more,eventhoughwe do not discussit here,thealgorithm
canalsobe extendedto outputthe rewriting in a compact
encodingthatidentifiesthecommonsubexpressionsof the
conjunctiverewritings,andthereforeleadsto moreefficient
queryevaluation.We notethathadwe chosenthealternate
strategy in Remark2, clauseD2 wouldnot hold.

procedurecombineMCDs(
k

)
/ j k areMCDs formedby thefirst stepof thealgorithm. j /
/ j EachMCD hastheform w3u0|�g�r>w��� y3giv}|�g�~�|�gi��{Q|_y . j /

Givena setof MCDs, {}�Yg�������g�{�� , wedefinethefunction��{ on r����H��w3f;y asfollows:
If for �>�lo  , ��{Q¡ � wx¢�y��l ��{Q¡ � wx¢�y , define��{�£0wx¢�y to be

oneof themarbitrarily but consistentlyacrossall ¤ for which��{Q¡ � wx¤¥y l ��{Q¡ � wx¢(y
Let ¦?§���¨�©�� lªn
For everysubset{}�bg�������g�{�� of

k
suchthat~�| ��« ~�|­¬ « ����� « ~�|H® l ��¯0°�p.±
��²3��w3f�y and

for every �;�lo  , ~ |H�(³ ~ |�� lon then
Definea mappinǵ=µ on the �� µ ’sasfollows:
If thereexistsa variable¢¶qtf suchthat v µ wx¢�y l ¤´=µiwx¤¥y l ¢

Else´ µ is a freshcopy of ¤
Createtheconjunctive rewritingf�·¸wx��{=w��¹ y,y :- r | � wx��{=w,´ � wt�� | � y,y,y3g�������gr�| ® wx��{=w,´=�Hwº�� | ® y,y,y
Add f�· to ¦�§���¨}©�� .

Return¦?§���¨}©
� .
Figure3: Phase2: combiningtheMCDs.

Givena combinationof MCDs thatsatisfiesProperty2,
theactualrewriting is constructedasshown in Figure3.

In the final step of the algorithm we tighten up the
rewritings by removing redundantsubgoalsas follows.
Supposea rewriting

�>C
includestwo atoms

a � and
a :

of
the sameview � , whoseMCDs were Z;� and Z : , andthe
following conditionsaresatisfied:(1) whenever

a � (resp.a :
) hasavariablefrom

�
in positionK , then

a :
(resp.

a � )
eitherhasthesamevariableor a variablethatdoesnot ap-
pearin

�
in that position,and(2) the rangesof ^_[�� and

^_[ ¬ do not overlapon existentialvariablesof � . In this
casewe canremove oneof the two atomsby applyingto�;C

thehomomorphism@ thatis (1) theidentityon thevari-
ablesof

�
and (2) is the mostgeneralunifier of

a � anda}:
. The underlying justification for this optimization is

discussedin [21], andit canalsobe appliedto the bucket
algorithmandtheinverse-rulesalgorithm.

Wenotethatevenafterthisstep,therewritingsmaystill
containredundantsubgoals.However, removing themin-
volvesseveraltestsfor querycontainment.

In our example, the algorithm will considerusing V5
to cover subgoal3, but when it realizesthat thereareno
MCDs that cover either subgoal1 or 2 without covering
subgoal3, it will discardV5. Thustheonly rewriting that
will beconsideredis
Q1’(x) :- V6(x,x).

Thefollowing theoremsummarizesthepropertiesof the
MiniCon algorithm:

Theorem4.1 Given a conjunctive query
�

and conjunc-
tive views A , both without comparison predicates, the Mini-
Con algorithm produces the union of conjunctive queries
that is the maximally-contained rewriting of

�
using A .

It shouldbe notedthat the worst-caseasymptoticrun-
ning time of theMiniCon algorithmis the sameasthatof
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thebucket algorithmandof theinverse-rulesalgorithmaf-
ter» the modificationdescribedin Section3.2. In all cases,
therunningtime is ¼ � N�½¿¾ � � , whereN is thenumberof
subgoalsin the query, ½ is the maximal numberof sub-
goalsin a view, and ¾ is thenumberof views.

Thenext sectiondescribesexperimentalresultsshowing
thedifferencesbetweenthethreealgorithmsin practice.

5 Experimental Results

The goal of our experimentswas twofold. First, we
wantedto comparethe performanceof the bucket algo-
rithm, theinverse-rulesalgorithm,andMiniCon algorithm
in differentcircumstances.Second,we wantedto validate
that MiniCon canscaleup to large numberof views and
largequeries.Our experimentsconsideredthreeclassesof
queriesandviews: (1) chainqueries,(2) starqueriesand
(3) completequeries,all of which arewell known in the
literature[25].

To facilitatetheexperiments,weimplementedarandom
querygeneratorwhich enablesus to control the following
parameters(1) the numberof subgoalsin the queriesand
views,(2) thenumberof variablespersubgoal,(3) thenum-
berof distinguishedvariables,and(4) thedegreeto which
predicatenamesare duplicatedin the queriesand views.
Theresultsareaveragedovermultiple runsgeneratedwith
the sameparameters(at least40, and usually more than
100). An importantvariableto keepin mind throughout
theexperimentsis thenumberof rewritings that canactu-
ally beobtained.

In most experimentswe consideredqueriesandviews
that hadthe samequeryshapeandsize. Our experiments
wereall run on a dualPentiumII 450MHz runningWin-
dowsNT 4.0with 512MBRAM. All of thealgorithmswere
implementedin Javaandcompiledto anexecutable.

5.1 Chain queries

In the context of chainquerieswe considerseveral cases.
In the first case,shown in Figure 4(a), only the first and
last variablesof the queryandthe view aredistinguished.
Therefore,in order to be usable,a view hasto be identi-
cal to the query, andasa resulttherearevery few rewrit-
ings. Thebucket algorithmperformstheworst,becauseof
the costof the querycontainmentchecksit needsto per-
form (it took on the order of 20 secondsfor 5 views of
size10 subgoals,andhencewe do not evenshow it on the
graph).Theinverse-rulesalgorithmandtheMiniCon algo-
rithm scalelinearly in the numberof views, but the Mini-
Con algorithmoutperformsthe inverse-rulesalgorithmby
a factorof about5 (andthis factoris independentof query
andview size). In fact, theMiniCon algorithmcanhandle
morethan1000views with 10 subgoalseachin lessthan
onesecond.

Thedifferencein theperformancebetweentheinverse-
rulesalgorithmandtheMiniCon algorithmin this context
andin othersis dueto thesecondphasesof thealgorithms.
In this phase,theinverse-rulesalgorithmis searchingfor a

unificationof the subgoalsof the querywith headsof in-
verserules. The MiniCon algorithmis searchingfor sets
of MCDs thatcoverall thesubgoalsin thequery, but cover
pairwisedisjoint subsets.Hence,the MiniCon algorithm
is searchinga much smaller space,becausethe number
of subgoalsis smallerthanthe numberof variablesin the
query. MoreovertheMiniCon algorithmis performingbet-
ter becausein thefirst phaseof thealgorithmit alreadyre-
movedfromconsiderationviewsthatmaynotbeusabledue
to violationsof Property1. In contrast,theinverse-rulesal-
gorithm musttry unificationsthat includesuchviews and
thenbacktrack.Theamountof work that the inverse-rules
algorithmwill wastedependson theorderin which it con-
sidersthe subgoalsin thequerywhenit unifiesthemwith
thecorrespondinginverserules. If a failureappearslatein
theordering,morework is wasted.Theimportantpoint to
noteis thattheoptimalorderin which to considerthesub-
goalsdependsheavily on the specificviews availableand
is, in general,very hardto find. Hence,it would be hard
to extendthe inverse-rulesalgorithmsuchthat its second
phasewould comparein performanceto that of the Mini-
Conalgorithm.

In the secondcasewe consider, shown in Figure4(b),
theviews areshorterthanthequery(of lengths2, 3 and4,
while thequeryhas12 subgoals).In thiscasetheMiniCon
algorithmstills scaleslinearlywhile theinverse-rulesalgo-
rithm growsfaster. For example,for 90views,theMiniCon
algorithm runs3 times fasterthan the inverse-rulesalgo-
rithm, andfor 180views it runs6 timesfaster.

Finally, thoughnot shown here,we alsoconsideredan-
othercasein which all the variablesin the views aredis-
tinguished. In this case,therearemany rewritings (often
morethan1000),andhencethe performanceof the algo-
rithmsis limited becauseof thesheernumberof rewritings.
Sincevirtually all combinationsproducecontainedrewrit-
ings,any completealgorithmis forcedto form anexponen-
tial numberof rewritings. TheMiniCon algorithmstill per-
formsbetterthanthe inverse-rulesalgorithmby anywhere
between10%betteranda factorof 2, but with queriesand
views with 5 subgoals,thealgorithmstake on theorderof
10 secondsfor 10 views. It shouldbeemphasizedthat the
differencein performancebetweentheMiniCon algorithm
andthe inverse-rulesalgorithmin this caseis only dueto
thesmallersearchspacebeingconsideredby theMiniCon
algorithm.

5.2 Star and completequeries

In starqueries,thereexists a uniquesubgoalin the query
that is joined with every other subgoal,and thereare no
joins betweenthe othersubgoals.In the casesof two dis-
tinguishedvariablesin theviewsor all view variablesbeing
distinguished,the performanceof the algorithmsmirrors
thecorrespondingcasesof chainqueries.Hence,we omit
thedetailsof theseexperiments.Figure5(a)showstherun-
ning timesof theinverse-rulesalgorithmandtheMiniCon
algorithmin the casewherethe distinguishedvariablesin
theviewsaretheonesthatdonotparticipatein thejoins. In
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Figure4: Experimentalresultsfor chainqueries.Thegraphon theleft considerstwo distinguishedvariablesin theviews, andshows
that theMiniCon algorithmandthe inverse-rulesalgorithmsbothscaleup to hundredsof views. TheMiniCon algorithmoutperforms
theinverse-rulesalgorithmby a factorof 5. In theright graph,theviews areof lengths2, 3 and4, andthequeryhas12subgoals.In this
casetheMiniCon algorithmstill scaleslinearly, while theinverse-rulesalgorithmdoesnot.

thiscase,therearerelatively few rewritings. Weseethatthe
MiniCon algorithmscalesup muchbetterthantheinverse-
rulesalgorithm. For 20 views with 10 subgoalseach,the
MiniCon algorithmruns20 times fasterthan the inverse-
rulesalgorithm.Heretheexplanationis thatthefirst phase
of theMiniCon algorithmis ableto prunemany of theirrel-
evantviews,whereastheinverse-rulesalgorithmdiscovers
that theviews areirrelevantonly in thesecondphase,and
oftenit mustbediscoveredmultiple times.

An experimentwith similar settingsbut for complete
queriesis shown in Figure5(b). In completequeriesevery
subgoalis joinedwith everyothersubgoalin thequery. As
the figure shows, the MiniCon algorithmoutperformsthe
inverse-rulesalgorithmby a factorof 4 for 20 views, and
by a factorof 6 for 50 views, which is lessof a speedup
thanwith of starqueries. The explanationfor this is that
therearemorejoins in thequery, andthustheinverse-rules
algorithmis ableto detectuselessviewsearlierin its search
becausefailuresto unify occurmorefrequently. Finally, we
alsoransomeexperimentson queriesandviews thatwere
generatedrandomlywith no specificpattern. The results
showed that the MiniCon algorithmstill scalesup grace-
fully, but the behavior of the inverse-rulesalgorithm was
too unpredictable(thoughalwaysworsethantheMiniCon
algorithm),dueto the natureof whenthe algorithmsdis-
cover thata rulecannotbeunified.Additionalexperiments
areneededin orderto draw any conclusionasto how the
algorithmsperformfor completelyrandomqueries.

5.3 Summary

In summary, ourexperimentsshowedthefollowing points.
First, the MiniCon algorithm scalesup to large numbers
of views andsignificantlyoutperformstheothertwo algo-
rithms. This point is emphasizedby Table 1, wherewe
tried to pushtheMiniCon algorithmto its limits. Thetable
considersnumberof subgoalsandnumberof viewsthatthe
MiniCon algorithmis ableto processgiven10 seconds.In

Querytype Distinguished # of subgoals # of views
Chain All 3 45
Chain All 12 3
Chain Two 5 9225
Chain Two 99 115
Star NonJoined 5 12235
Star NonJoined 99 35
Star Joined 10 4520
Star Joined 99 75

Table1: The numberof views that the MiniCon algorithmcan
processin under10 secondsin varioussituations

somecases,the algorithmcanhandlethousandsof views,
which is a magnitudethatwasclearlyout of reachof pre-
viousalgorithms.

Second,the experimentsshowed that the bucket algo-
rithm performedmuchworsethantheothertwo algorithms
in all cases.More interestingwasthecomparisonbetween
theMiniCon algorithmandtheinverse-rulesalgorithm. In
all casestheMiniCon algorithmoutperformedtheinverse-
rulesalgorithm,thoughby differing factors. In particular,
the performanceof the inverse-rulesalgorithm was very
unpredictable. The problemwith the inverse-rulesalgo-
rithm is that it discoversmany of the interactionsbetween
theviews in its secondphase,andtheperformancein that
phaseis heavily dependenton theorderin which it consid-
ersthe querysubgoals.However, sincethe optimal order
dependsheavily on the interactionwith the views, a gen-
eralmethodfor orderingthesubgoalsin thequeryis hardto
find. Finally, all threealgorithmsarelimited in caseswhere
thenumberof resultingrewritings is especiallylargesince
acompletealgorithmmustproduceanexponentialnumber
of rewritings.

6 Comparison predicates
Theeffect of comparisonpredicateson theproblemof an-
sweringqueriesusingviews is quite subtle. If the views
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Figure5: Theleft figureshows therunningtimesfor starqueries,wherethedistinguishedvariablesin theviews arethosenot partici-
patingin thejoins. Thegraphon theright shows runningtimesfor completequerieswith a similar setting.In bothcasestheMiniCon
algorithmsignificantlyoutperformstheinverse-rulesalgorithm.

containcomparisonpredicatesbut thequerydoesnot, then
theMiniCon algorithmwithoutany changesstill yieldsthe
maximally-containedqueryrewriting. On the otherhand,
if the query containscomparisonpredicates,then it fol-
lows from [1] that therecanbeno algorithmthatreturnsa
maximally-containedrewriting, evenif weconsiderrewrit-
ings that arerecursive datalogprograms(let aloneunions
of conjunctivequeries).

In this sectionwe presentan extensionto the MiniCon
algorithmthatwould(1)alwaysfindonly correctrewritings
(2) find themaximally-containedrewriting in many of the
commoncasesin which comparisonpredicatesare used,
and(3) is guaranteedto producethemaximally-contained
rewriting whenthequerycontainsonly semi-interval con-
straints, i.e., when all the comparisonpredicatesin the
queryareof the form 8Ã5ÅÄ or 8�4LÄ , where8 is a vari-
ableand Ä is a constant(or they areall of the form 8ÇÆ¿Ä
or 8ÇÈÅÄ ). We show experimentsdemonstratingthe scale
up of the extendedalgorithm. Finally, we show an exam-
ple thatprovidesanintuition for whichcasesthealgorithm
will not capture.

In ourdiscussion,wereferto thesetof comparisonsub-
goalsin a query

�
as É � � � . Given a setof variables �� ,

we denoteby ÉËÊÌ � � � the subsetof the subgoalsin É � � �
that includes(1) only variablesin �� or constantsand(2)
containsat leastoneexistentialvariableof

�
. Intuitively,

ÉËÊÌ � � � denotesthesetof comparisonsubgoalsin thequery
thatmust besatisfiedby theview, if �� is thedomainof a
MCD. We assumewithout lossof generalitythat É � � � is
logically closed,i.e., thatif É � � ��Í 7 + , then+ � É � � � . We
canalwayscomputethelogicalclosureof É � � � in timethat
is quadraticin thesizeof

�
[34].

We make three changesto the MiniCon algorithm to
handle comparisonpredicates. First, we only consider
MCDs Z thatsatisfythefollowing conditions:

1. If 8 � �#"	$!% � � � , ^ [ � 8 � is an existentialvariablein
W [ � � � andÎ appearsin thesamecomparisonatomas
8 , thenÎ mustbein thedomainof ^ [ .

2. If �� is thesetof variablesin thedomainof themap-
ping ^ [ , thenÉ � W [ � � �Y�QÍ 7 ^ [ � ÉËÊÌ � .

Thefirst conditionis anextensionof Property1, andthe
secondcondition guaranteesthe comparisonsubgoalsin
theview logically entail the relevantcomparisonsubgoals
in the query. Note that becauseof the secondcondition,
theonly subgoalsin ÉËÊÌ � � � thatmaynot besatisfiedby �
mustincludeonly variablesthat ^_[ mapsto distinguished
variablesof � . As a result,sucha subgoalcansimply be
addedto therewriting aftertheMCDsarecombined.

The secondchangeis that we disallow all MCDs that
constrainvariablesto be incompatiblewith the variables
they mapin thequery. For example,if a queryhasa sub-
goalx È 17 anda MCD mapsx to a view variablea, and
a 4 5 is in theview, thenwecanignoretheMCD.

Thethird changewe make to theMiniCon algorithmis
thefollowing: afterformingarewriting

�>C
by combininga

setof MCDs, we addthe subgoalcXZ � + � for any subgoal
of É � � � thatis not satisfiedby

�;C
.

Example6.1 Considera variation on our running exam-
ple, wherethepredicateyear denotestheyearof publica-
tion of apaper.
Q2(x) :- inSIGMOD(x), cites(x,y), year(x,r1),

year(y,r2), r1 Æ 1990, r2 5 1985
V7(a,s1) :- inSIGMOD(a), cites(a,b), year(a,s1),

year(b,s2), s2 5 1983
V8(a,s1) :- inSIGMOD(a), cites(a,b), year(a,s1),

year(b,s2), s2 5 1987
Ouralgorithmwouldfirst considerV7 with themapping

T x D a, y D b, r1 D s1, r2 D s2 U . In this case,the
subgoalr2 5 1985 is satisfiedby theview, but r1 Æ 1990
is not. However, sinces1 is adistinguishedvariablein V7,
thealgorithmcancreatetherewriting:
Q2’(x) :- V7(x,r1), r1 Æ 1990

When the algorithm considersa similar variablemap-
ping to V8, it will notice that the constrainton r2 is not
satisfied,andsinceit is mappedto anexistentialvariablein
V8, no MCD is created. 9
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Example6.2 Thefollowing exampleprovidesanintuition
forÏ which rewritings our extendedalgorithmwill not dis-
cover. Considerthefollowing queryandview:

Q(u) :- e(u,v), u 5 v
V1(a) :- e(a,b), e(b,a)

Thealgorithmwill notcreateany MCD becausethesub-
goal '�5�F in thequeryis not implied by theview. How-
ever, thefollowing is acontainedrewriting of

�
.

Q’(u) :- V1(u)
In orderto show that the querycontainsthe rewriting, we
needto considertwo differentcontainmentmappings,de-
pendingon whether"m5Ð) or "¶ÈÑ) [17]. In eachof these
mappings,thesubgoal� � 'Q�,F � is mappedto adifferentsub-
goal. Our algorithmwill only find rewritings in which the
targetof themappingfor asubgoalin thequeryis thesame
for any possibleorderon thevariables. 9

Figure6 shows sampleexperimentsthatwe ran on the
extendedalgorithmin thecaseof chainqueries.In theex-
periments,we addedto thequeriesandviews a numberof
comparisonsubgoalsof theform 8º4ÒÄ or 8 ÈÒÄ .

Theexperimentsshow thatthesametrendswesaw with-
out comparisonpredicatesappearhereaswell. In general,
theadditionof comparisonpredicatesreducesthenumber
of rewritingsbecausemoreviewscanbedeemedirrelevant.
Thisis illustratedin Figure6(b)whereall of thevariablesin
theviewsaredistinguishedandthereforewithoutcompari-
sonpredicatestherewouldbemany morerewritings. How-
ever, sincethecomparisonpredicatesreducethenumberof
relevant views, the algorithm with comparisonpredicates
scalesup to a largernumberof views. In Figure6(a), the
numberof rewritings is very small,andtheextra overhead
of processingthecomparisonpredicatescausesslow down
of a factorof 4. This factorcanbedecreasedwith further
optimizationsof ourcomparisonpredicatecodethatwedid
not explore.

7 RelatedWork

Algorithmsfor rewriting queriesusingviews aresurveyed
in [20]. Most of the previous work on the problemfo-
cusedon developing algorithmsfor the problem, rather
that on studyingtheir performance.In additionto the al-
gorithmsmentionedpreviously, algorithmshave beende-
veloped for conjunctive querieswith comparisonpredi-
cates[35], queriesandviews with groupingandaggrega-
tion [15, 31, 7, 13], OQL queries[11], and queriesover
semi-structureddata [26, 4]. The problem of answer-
ing queriesusingviews hasbeenconsideredfor schemas
with functionaland inclusiondependencies[10, 14], lan-
guagesthatquerybothdataandschema[23], anddisjunc-
tive views [2]. Clearly, eachof theaboveextensionsto the
basicproblemrepresentsanopportunityfor a possibleex-
tensionof theMiniCon algorithm. Mitra [24] developeda
rewriting algorithmthatalsocapturestheintuition of Prop-
erty 1, and thus would likely lead to betterperformance
thanthebucketalgorithmandtheinverse-rulesalgorithm.

Severalworksdiscussedextensionsto queryoptimizers
that try to make useof materializedviews in query pro-
cessing[33, 6, 3, 27, 36]. In somecases,they modifiedthe
System-Rstyle join enumerationcomponent[33, 6], and
in othersthey incorporatedview rewritings into therewrite
phaseof theoptimizer[36, 27]. Theseworksshowedthat
consideringthepresenceof materializedviewsdid notneg-
atively impacttheperformanceof theoptimizer. However,
in theseworksthenumberof views tendedto berelatively
small. In [27], the authorsconsidera more generalset-
ting wherethey useaconstraintlanguageto describeviews,
physicalstructuresandstandardtypesof constraints.Un-
like our algorithm, the above works are designedto pro-
ducea single conjunctiverewriting thatis equivalentto the
query and has the leastcost, whereaswe searchfor the
maximally-containedrewriting.

8 Conclusions

This papermakes two importantcontributions. First, we
presentanew algorithmfor answeringqueriesusingviews,
andsecond,we presentthefirst experimentalevaluationof
suchalgorithms. We beganby analyzingthe two existing
algorithms,thebucketalgorithmandtheinverse-rulesalgo-
rithm, andfoundthat they have significantlimitations. We
developedthe MiniCon algorithm, a novel algorithm for
answeringqueriesusingviews, andshowed that it scales
gracefully and outperformsboth existing algorithms. As
a resultof our work, we have establishedthat answering
queriesusingviews canbedoneefficiently for large-scale
problems.Finally, we describedanextensionof our algo-
rithm to handlecomparisonpredicates.As we show in the
extendedversionof thepaper, theMiniCon algorithmcan
alsobe extendedin a straightforward fashionto dealwith
access-patternlimitations[30] in thesamespirit of [10].

An interestingdirectionof future researchis to extend
the MiniCon algorithm to the context of using material-
ized views for queryoptimizationandto considerbagse-
mantics. In this context, we are interestedin the cheap-
est rewriting of the query. Conceivably, it is possibleas
in [33, 6] to modify thesecondphaseof theMiniCon algo-
rithm suchthat it combinestheMCDs in a bottom-updy-
namicprogrammingstyle,andhencesavesonly thecheap-
estrewriting. However, for thealgorithmto guaranteefind-
ing thecheapestrewriting, wenow needto considerrewrit-
ingsthatcontainlogically redundantsubgoals.

Example8.1 Supposewe have the following query and
views:

Q(x,y) :- e1(x,z), e2(z,y)
V1(x,y) :- e1(x,y)
V2(z,y) :- e2(z,y)
V3(x) :- e1(x,z), e2(z,y)
If the join of e1 ande2 is very selective, the rewriting of
thequerythatwill yield thecheapestqueryexecutionplan
maybe:

q’(x,y) :- v3(x), v1(x,y), v2(z,y).
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Figure6: Experimentswith theMiniCon algorithmandcomparisonpredicates.The left graphshows thesamecaseasin Figure4(a)
andshows that addingcomparisonpredicatesonly slows down the runningtime by a factorof 4. The graphon the right shows the
runningtimeswhenall of thevariablesin theviews aredistinguished.

However, theMiniCon algorithmwould not createa MCD
that includesV3, becauseit would violateProperty1, and
wouldhencemissthis rewriting. 9

Hence,to extendtheMiniCon algorithmto this context
we needto establisha boundon thesizeof rewritings that
needto beconsidered,andto relaxthedefinitionof MCDs.
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