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Abstract

The problemof answeringqueriesusingviews is
to find efficientmethodsof answeringa queryus-
ing asetof previously materializedviews overthe
databaseratherthanaccessinghe databaseela-
tions. The problemhasrecevedsignificantatten-
tion becausef its relevanceto a wide variety of

datamanagemenproblems suchasdataintegra-
tion, query optimization,andthe maintenancef

physicaldataindependenceTo date,the perfor

manceof proposedalgorithmshasreceved very
little attention,andin particular their scaleup in

the presenceof a large numberof views is un-
known.

We first analyzetwo previous algorithms, the
bucket algorithmandthe inverse-ruleslgorithm,
andshow their deficienciesWe thendescribethe
MiniCon algorithm, a novel algorithm for find-
ing the maximally-containedewriting of a con-
junctive query using a set of conjunctve views.
We presentthe first experimentalstudy of algo-
rithms for answeringqueriesusing views. The
studyshowvsthatthe MiniCon algorithmscalesup
well andsignificantlyoutperformghepreviousal-
gorithms.Finally, we describeanextensionof the
MiniCon algorithmto handlecomparisonpredi-
catesandshaw its performancexperimentally
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1 Intr oduction

The problem of answeringqueries using views (a.k.a.
rewriting queriesusing views) hasrecently receved sig-
nificant attentionbecauseof its relevanceto a wide vari-
ety of datamanagemenproblems[20]: query optimiza-
tion [6, 21, 36], maintenanceof physical dataindepen-
dencd35, 33, 27, dataintegration[22, 9, 18, 19, anddata
warehous@ndweb-sitedesign[16, 32]. Informally speak-
ing, the problemis the following. Supposewe are given
aquery( over a databaseschemaanda setof view def-
initions V1, ..., V,, over the sameschema. Is it possible
to answerthe query@ usingonly the answerdo the views
Vi,...,Vy, andif so,how?

Therearetwo main contets in which the problem of
answeringqueriesusing views has beenconsidered. In
the first context, wherethe goal is query optimizationor
maintenancef physicaldataindependencgs5, 33, 6], we
searchfor anexpressionthatusesthe views andis equiva-
lent to the original query Hereit is usuallyassumedhat
the numberof views is on the sameorder as the size of
theschemaThe secondcontet is thatof dataintegration,
whereviews describea set of autonomousheterogenous
datasources.A userposesa queryin termsof a mediated
schemaandthe dataintegrationsystemneedgo reformu-
late the queryto referto the datasources.In a subsequent
phasethe queriesover the sourcesare optimizedand ex-
ecuted. The reformulationproblemcan be solved by al-
gorithmsfor answeringqueriesusingviews, thoughin this
context, we usually cannotfind a rewriting thatis equva-
lentto the userquerybecausef the datasources’limited
coverage. Instead,we searchfor a maximally-contained
rewriting, which providesthe bestanswerpossible,given
the available sources.Whenthe queryandviews arecon-
junctive (i.e., select-project-joinjvithoutcomparisorpred-
icates themaximally-containedewriting is aunionof con-
junctive queriesover the views. The key challengein this
context is to developanalgorithmthatscalesupin thenum-
berof views.

We considerthe problem of answeringconjunctive
gueriesusing a setof conjunctive views in the presence
of a large numberof views. In general,this problemis
NP-Completédbecausdt involvessearchinghrougha pos-
sibly exponentiahumberof rewritings[21]. Previouswork
has mainly consideredtwo algorithmsfor this purpose.



Thebucketalgorithm,developedaspartof thelnformation
Manifold System[22], controlsits searchby first consid-
eringeachsubgoaln the queryin isolation,andcreatinga
bucketthatcontainsonly theviewsthatarerelevantto that
subgoal.Thealgorithmthencreategewritings by combin-
ing oneview from every bucket. As we shaw, the com-
bination stephassereral deficienciesand doesnot scale
up well. Theinverse-ruleslgorithm,developedprimarily

in the InfoMasterSystem [29, 8], considergewritings for

eachdatabaseelationindependenof any particularquery

Givenauserquery theserewritingsarecombinedappropri-
ately We shaw thattherewritings producedy theinverse-
rulesalgorithmneedto be further processedh orderto be
appropriatdor queryevaluation.Unfortunatelyin this ad-
ditional processingtepthealgorithmmustduplicatemuch
of the work donein the secondphaseof the bucket algo-
rithm.

Basedon theinsightsinto the previous algorithms,we
introducethe MiniCon algorithm, which addressesheir
limitations and scalesup to a large numberof views. The
key ideaunderlyingthe MiniCon algorithmis a changeof
perspectie: insteadof building rewritings by combining
rewritings for eachquerysubgoalor databaseelation,we
considerhow eachof the variables in the querycaninter
actwith the availableviews. Theresultis thatthe second
phaseof the MiniCon algorithmneedsto considerdrasti-
cally fewer combination®f views. Hence aswe show ex-
perimentallytheMiniCon algorithmscalesuip muchbetter
The specificcontributionsof the paperarethefollowing:

e WedescribeheMiniCon algorithmandits properties.

e We presenta detailed experimental evaluation and

analysisof algorithmsfor answeringqueriesusing
views. The experimentalresultsshowv (1) the Mini-
Con algorithm significantly outperformsthe bucket
and inverse-rulesalgorithms, (2) the MiniCon algo-
rithm scalesupto hundredof views, therebyshaving
for the first time that answeringqueriesusing views
canbe efficient on large scaleproblems. We believe
that our experimentalevaluationin itself is a signifi-
cantcontribution thatfills a void in previouswork on
thistopic.

e We describean extensionof the MiniCon algorithm

to handlecomparisorpredicateandexperimentake-
sultsonits performance.

This paperfocuseson the problemof answeringqueries
usingviewsfor select-project-joimuerieundersetseman-
tics. While suchqueriesare quite commonin datainte-
gration applications,mary applicationswill needto deal
with queriesinvolving grouping and aggregation, semi-
structureddata,nestedstructuresandintegrity constraints.
Indeed,the problemof answeringgueriesusingviews has
beenconsideredn thesecontets aswell [15, 31, 7, 13,
26, 4, 10, 14]. In contrastto theseworks, our focusis on
obtaining a scalablealgorithm for answeringqueriesus-
ing views and the experimentalevaluation of suchalgo-
rithms. Hence,we begin with the classof select-project-
join queries.
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The paperis organizedasfollows. Section2 presents
the problemformally, and Section3 discusseghe limita-
tions of the previous algorithms. Section4 describeshe
MiniCon algorithm,andSection5 presentshe experimen-
tal evaluation. Section6 describesan extensionof the
MiniCon algorithmto comparisonpredicates. Section7
discusseselatedwork andSection8 concludes.

2 Preliminaries

Queries and views: We considerthe problemof answer
ing queriesusingviewsfor conjunctive queries(i.e.,select-
project-joinqueries).A conjunctive query hastheform:
q(X) - er(X1),. .., en(Xy)

whereq andey,...,e, arepredicatenames. The atoms
e1(X1),...,en(X,) arethe subgoals in the body of the
query, whereey, ..., e, referto databaseelations. The
atomg(X) is calledthe head of thequery andrefersto the
answermelation. ThetuplesX, X1, ..., X,, containeither
variablesor constants.We requirethat the querybe safe,
i.e., thatX C X; U...U X, (thatis, every variablethat
appearsn the headmust also appearin the body). The
variablesin X arethe distinguished variablesof the query
andall the othersare existential variables. We denotein-
dividual variablesby lowercasdetters. We useVars(Q)
(Subgoals(Q)) to referto thesetof variablegsubgoals)n
@, andQ(D) to referto theresultof evaluatingthe query
Q overthedatabasé.

Note that unionscan be expressedn this notationby
allowing a setof conjunctve querieswith the samehead
predicate. A view is a namedquery If the queryresults
are stored,we refer to them as a materializedview, and
we refer to the resultsetasthe extension of the view. In
Section6 we considerqueriesthat containsubgoalswith
comparisorpredicates<, <, #. In this case,we require
thatif a variablex appearsn a subgoalof a comparison
predicatethenz mustalsoappeain anordinarysubgoal.

Example 2.1 Considerthe following schemathat we use
throughoutthe paper The relation cites(pl,p2) stores
pairsof publicationidentifierswherepl citesp2. Therela-
tion sameTopic storegpairsof paperghatareonthesame
topic. The unaryrelationsinSIGMOD andinVLDB store
ids of paperspublishedin SIGMOD and VLDB respec-
tively. Thefollowing queryasksfor pairsof papersonthe
sametopic that alsocite eachother Notethatjoin predi-
catesn this notationareexpressedby multiple occurrences
of thesamevariables.

q(x,y):- sameTopic(x,y), cites(x,y), cites(y,Xx) o

Query containment and equivalence: The conceptsof
guery containmentand equivalenceenableus to compare
betweemueriesandrewritings. We saythata queryQ; is
contained in thequery@,, denotedy Q1 C Qs, if thean-
swerto @), is asubsebf theansweto @), for any database
instanceWe saythat(); and@, areequivalentif Q1 C Q)5
and@z C Q.

Containment mappings provide a necessanand suffi-
cientconditionfor testingquery containment.A mapping



7 from Vars(Q2) to Vars(Q1) is acontainmentnapping
if (1) = mapsevery subgoain thebody of @), to asubgoal
in the body of Q1, and(2) = mapsthe headof (), to the
headof Q1. Thequery@, contains@; if andonly if there
is a containmenmappingfrom Q> to Q1 [5].
Givenapartialmappingr onthevariablesof aquery we
extendit in theobviousmannetto applyto setsof variables
andto subgoalof the query(whenall the variablesof the
subgoalarein the domainof 7). A conjunctive queryis
saidto beredundant if it is possibleto remove someof its
subgoalsandobtainanequialentquery
Answering queries using views: Givena query(@ anda
setof view definitionsV = V4,..., V,,, arewriting of the
queryusingtheviewsis a queryexpressiorny’ whosebody
predicatesreeitherVy, ..
We distinguishbetweentwo typesof queryrewritings:
equivalent rewritings, thatareusedin the contexts of query
optimizationandthemaintenancef physicaldataindepen-
denceandmaximally-contained rewritings, thatareusedn
the context of dataintegration.

Definition 2.1 (equivalent rewriting) Let @ be a query,
andV = V4,...,V, beasetof views, bothoverthesame
databaseschema.The queryQ’ is anequialentrewriting
of Q usingV if for arny databaseé, theresultof evaluating
Q' overVi(D),...,V,(D) isthesameasQ(D). O

Example 2.2 Considerthe query from Example2.1 and
the following views. The view V1 storespairs of papers
that cite eachother andV2 storespairs of paperson the
sametopic andeachof which citesatleastoneotherpaper

Q(x,y):- sameTopic(x,y), cites(x,y), cites(y,x)

V1(a,b):- cites(a,b), cites(b,a)

V2(c,d) :- sameTopic(c,d), cites(c,cl), cites(d,d1)

Thefollowing is anequialentrewriting of Q:

Q'(x.y):- V1(x,y), V2(x.y) .

To checkthatQ’ is an equivalentrewriting, we unfold the

view definitionsto obtainQ”, andshaw thatQ is equva-

lent to Q”, usinga containmenimapping(in this casethe

identity mappingexceptfor x1 — y, y1 — Xx).

Q"(x,y):- cites(x,y), cites(y,x), sameTopic(X,y),
cites(x,x1), cites(y,y1) |

Data Integration: Oneof the mainusesof algorithmsfor
answeringqueriesusingviews is in the context of datain-
tegration systemsthat provide their userswith a uniform
interfaceto a multitude of datasourceg22, 18, 12, 19].
Usersposequeriesin termsof a mediated schema, which
is asetof relationsdesignedo captureghesalientaspect®f
theapplication.Thedata,however, is storedin thesources.
In orderto be ableto translateusers’queriesinto queries
onthedatasourcesthedataintegrationsystermeedsa de-
scription of the contentsof the sources. One of the ap-
proachego specifyingsuchdescriptionsis to describea
datasourceasa view over the mediatedschemaspecify-
ing which tuplescanbe foundin the source.For example,

486

.,V Or comparisorpredicates.

in our domain,we may have two datasourcesS1 andS2,
containingpairsof SIGMOD (respectiely VLDB) papers
that cite eachother The sourcescanbe describedasfol-
lows:

S1(a,b):- cites(a,b), cites(b,a), inSIGMOD(a),
inSIGMOD(b)

S2(a,b):- cites(a,b), cites(b,a), invVLDB(a),
inVLDB(b)

Givenaquery(@, thedataintegrationsystenfirst needs
to reformulateQ) to referto thedatasourcesi.e.,theviews.
Therearetwo differencesbetweenthis applicationof an-
sweringqueriesusingviewsandthatconsideredn thecon-
text of queryoptimization.First, theviews herearenot as-
sumedto containall thetuplesin their definitionsincethe
datasourcesaaremanagedutonomouslyFor example,the
sourceS1 may not containall the pairsof SIGMOD pa-
persthatcite eachother Secondwe cannotalwaysfind an
equivalentrewriting of the queryusingthe views because
theremay be no datasourceghat containall of the infor-
mationthe queryneeds.Instead we considerthe problem
of finding a maximally-containedewriting, asillustrated
below.

Example 2.3 Continuingwith our example,assumingve
have the datasourceglescribedy S1, S2 andV2 andthe
samequeryq, the bestrewriting we cangenerates:

q'(xiy):_ Sl(X,y), V2(X1y)
q'(xiy):_ SZ(X,y), V2(X1y)

Notethatthisrewriting is aunionof conjunctvequeries,
describingmultiple waysof obtaininganswerto the query
from the availablesources Therewriting is notanequiva-
lent rewriting, sinceit missesary pair of paperghatis not
bothin SIGMOD or bothin VLDB, butwe don't have data
sourcesto provide us suchpairs. Furthermoresincethe
sourcesarenotguaranteetb have all thetuplesin thedefi-
nition of theview, our rewritings needto considedifferent
views thatmay have similar definitions.For example,sup-
posewe have thefollowing sourceS3:

S3(a,b):- cites(a,b), cites(b,a), inSIGMOD(a),
inSIGMOD(b)

Thedefinitionof S3 is identicalto thatof S1, however,
becaus®f sourceincompletenesst may containdifferent
tuplesthanS1. Hence,our rewriting will alsohave to in-
cludethefollowing in additionto the othertwo rewritings.

q'(xiy):_ S3(X,y), V2(X1y) |

Maximally-containedewritings aredefinedw.r.t. a partic-

ular querylanguagen which we expressrewritings. Intu-

itively, the maximally-containedewriting is onethat pro-

videsall the answergossiblefrom a given setof sources.
Formally, they aredefinedasfollows.

Definition 2.2 (maximally-contained rewriting) The
query@’ is a maximally-containedewriting of a query@
usingtheviews V = V4,..., V, w.r.t. aquerylanguagel
if



1. for ary databaseé), andextensionsuy, . .., v, of the
views suchthatv; C V;(D), for 1 < i < n, then
Q' (v1,...,v,) CQ(D) forall i

2. thereis no other query @; in the languagel, such
for every databaseD and extensionsuvy,...,v, as
abore (1) Q'(v1,...,v) C Q1(v1,...,v,) and(2)
Q1(v1,...,vy) C Q(D), andthereexistsatleastone
databaséor which (1) is a strict subset. a

Given a conjunctive query Q and a setof conjunctve
views V, the maximally-containedewriting of a conjunc-
tive querymaybea unionof conjunctive queries(we refer
to theindividual conjunctive queriesasconjunctive rewrit-
ings). Whenthe queriesandthe views areconjunctive and
do not containcomparisorpredicatesit follows from [21]
that we needonly considerconjunctive rewritings Q' that
have at mostthe numberof subgoalsn thequery@Q.

Remark 1 It is importantto emphasizeat this point that
the definitionsconsideredn this sectiononly ensurethat
therewriting of the queryobtainsasmary answersaspos-
siblefrom a setof views, which is the mainconcernin the
context of dataintegration.We arenotconsideringherethe
problemof finding the rewriting that yields the cheapest
guery executionplan over the views, which would be the
mainconcernwhenusingalgorithmsfor answeringjueries
using views for query optimization and maintenanceof
physicaldataindependenceln the concludingsectionwe
revisit this issue. In addition,we do not considerherethe
issueof orderingtheresultsfrom the sources. |

3 Previous Algorithms

The theoretical results on answering queries using

views[21] shavedthatwhentherearenocomparisorpred-

icatesin the query the searchfor a maximally-contained
rewriting can be confinedto a finite space:an algorithm

needsto considerevery possibleconjunctionof n or less

view atoms,where n is the numberof subgoalsin the

query Two previousalgorithms,the bucket algorithmand

the inverse-rulesalgorithm, attemptedo find more effec-

tive methodgo producerewritings thatdo notrequiresuch

exhaustve search.In this sectionwe briefly describehese
algorithmsandpoint out their limitations. In Section5 we

comparethesealgorithmsto our MiniCon algorithm and

shav thatthe MiniCon algorithmsignificantlyoutperforms
them. We describethe algorithmsfor queriesand views

without comparisorsubgoals.

3.1 The Bucket Algorithm

The bucket algorithmwas developedas part of the Infor-
mationManifold System22]. Thekey ideaunderlyingthe
bucketalgorithmis thatthenumberof queryrewritingsthat
needto be consideredanbedrasticallyreducedf we first
considereachsubgoalin the queryin isolationanddeter
mine which views mayberelevantto a particularsubgoal.

We illustrate the bucket algorithm with the following
qguery andviews. Note that the query now only asksfor
asetof papersratherthanpairsof papers.
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Q1(x) :- cites(x,y),cites(y,x),sameTopic(x,y)
V4(a) :- cites(a,b), cites(b,a)

V5(c,d) :- sameTopic(c,d)

V6(f,h) :- cites(f,g),cites(g,h),sameTopic(f,g)

In thefirst step thebucketalgorithmcreates bucketfor
eachsubgoalin Q1. The bucket for a subgoalg contains
the views thatincludesubgoald¢o which g canbe mapped
in arewriting of thequery If asubgoaly unifieswith more
than one subgoalin a view V, thenthe bucket of g will
containmultiple occurrence®f V. The bucket algorithm
would createthefollowing buckets:

cites(x,y) | cites(y,x) | sameTopic(x,y)
V4(x) V4(x) V5(x,Y)
V6(X,Y) ‘ V6(X,Y) ‘ V6(X,Y)

Note thatit is possibleto unify the subgoalcites(x,y)
in the query with the subgoalcites(b,a) in V4, with the
mappingx — b, y — a. However, the algorithmdid not
include the entry V4(y) in the bucket becauset requires
thatevery distinguishedrariablein thequerybemappedo
adistinguishedrariablein the view.

In the secondstep, for eachelementof the Cartesian
productof the buckets,thealgorithmconstructsa conjunc-
tive rewriting andcheckswhetherit is containedor canbe
madeto be contained)in the query If so,therewriting is
addedto the answer Hence theresultof the bucket algo-
rithm is aunion of conjunctive rewritings.

In our example, the algorithmwill try to combineV4
with theotherviews andfail (aswe explainbelow). Thenit
will considertherewritings involving V6, andnotethatby
equatinghevariablesn theheadof V6 acontainedrewrit-
ing is obtained.Finally, thealgorithmwill alsonotethatVé
andV5 canbecombined.Thoughnot originally described
aspartof the bucket algorithm, it is possibleto addan ad-
ditional simplecheckthatwill determinethattheresulting
rewriting will be redundan{becausé/5 canbe removed).
Hence theonly rewriting in this example(which alsoturns
outto beanequialentrewriting) is:

Q1'(x) :- V6(X,X)

The maininefficiency of the bucket algorithmis thatit
missessomeimportantinteractionsbetweernview subgoals
by consideringeachsubgoalin isolation. As a result,the
bucketscontainirrelevantviews, andhencehesecondstep
of thealgorithmbecomewery expensve. We illustratethis
pointon our example.

Considerthe view V4, and supposehat we decideto
useV4 in suchaway thatthe subgoakites(x,y) is mapped
to the subgoakites(a,b) in theview, asshovn below:

Q1(x) :- cites(x,y),cites(y,x), SameTopic(x,y)
1 ?
V4(a) :- cites(a,b)cites( b,a)

However, the variableb doesnot appeaiin the headof
V4, andtherefore if we useV4, thenwe will not be able
to applythejoin predicatebetweercites(x,y) and Same-
Topic(x,y) in thequery Therefore V4 is notusablefor the
query but the bucket algorithmwould not discover this.

Furthermoregvenif the querydid not containSame-
Topic(x,y), thebucketalgorithmwould notrealizethatif it




usesV4, thenit hasto useit for both of the querysubgoals.
Realizingthis would save the algorithm exploring useless
combinationsn the secondbhase.

As we explain later, the MiniCon algorithm discovers
thesdnteractionsIn thisexample MiniConwill determine
thatV4 is irrelevantto the query In the casein which the
guery doesnot containthe subgoalSameTopic(x,y), the
MiniCon algorithmwill discorerthatthetwo cite subgoals
needto betreatedatomically

3.2 Thelnverse-RulesAlgorithm

Lik e the bucket algorithm,the inverse-ruleslgorithm[29,
8] wasalsodevelopedin the context of a dataintegration
system. The key ideaunderlyingthe algorithmis to con-
structa setof rulesthat invert the view definitions,i.e.,
rulesthatshav how to computetuplesfor the databasee-
lations from tuplesof the views. Given the views in the
previous example, the algorithmwould constructthe fol-
lowing inverserules:

R1: cites(a, f1(a)) :- V4(a)

R2: cites(f1(a), a) :- V4(a)

R3: sameTopic(c,d) :- V5(c,d)

R4: cites(f, f2(f,h)) :- V6(f,h)

R5: cites(f2(f,h), h) :- V6(f,h)

R6: sameTopic(f, f2(f,h)) :- V6(f,h)

ConsidettherulesR1 andR2; intuitively, their meaning
is thefollowing. A tuple of the form (p1) in the extension
of the view V4 is a witnessof two tuplesin the relation
cites. It isawitnessin thesensehatit tellsthattherelation
cites containsa tuple of the form (p1, Z), for somevalue
of Z, andthattherelationalsocontainsa tuple of theform
(Z, pl), for thesame valueof Z.

In orderto expressthe information that the unknovn
valueof Z is thesamein thetwo atomswe referto it using
the functional Skolemterm f1(Z). Note thattheremay be
severalvaluesof Z in thedatabas¢hatcausehetuple(pl)
to bein the self-join of cites, but all thatwe know is that
thereexistsatleastonesuchvalue.

The rewriting of a query @ usingthe setof views V is
simply the compositionof ¢ andthe inverserulesfor V.
Hence oneof theimportantadvantage®f the algorithmis
thatthe inverserules canbe constructecaheadof time in
polynomialtime, independentf a particularquery

Therewritings producedy theinverse-ruleglgorithm,
asoriginally describedn [8], arenot appropriatdor query
evaluationfor two reasonsFirst, applyingtheinverserules
to the extensionof theviews mayinvert someof the useful
computationdoneto producethe view. Second,we may
endup accessingiews thatareirrelevantto the query To
illustratethe first point, supposeve usethe rewriting pro-
ducedby the inverse-ruleslgorithmin the casewherethe
view V6 hastheextension{ (p1, p1), (p2,p2) }.

First, we would apply the inverserules to the exten-
sionsof the views. Applying R4 would yield cites(p1,
f2(p1,pl1)), cites(p2, f2(p2,p2)), andsimilarly applying
R5andR6 would yield thefollowing tuples:
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cites(pl, f2(p1,pl)),
cites(f2(p1,p1),pl),
cites(f2(p2,p2),p2),
sameTopic(pl,pl),
sameTopic(p2,p2).

Applying the query Q1 to the tuplescomputedabove
obtainsthe answerspl andp2. However, this computa-
tion is highly inefficient. Insteadof directly usingthe tu-
plesof V6 for the answerthe inverse-ruleslgorithmfirst
computeduplesfor therelationcites, andthenhadto re-
computethe self-join of cites that wasalreadycomputed
for V6. Furthermoreif the extensionof theviews V4 and
V5 are not empty thenapplying the inverserules would
produceuselessuplesasexplainedin Section3.1.

Hence,beforewe canfairly comparethe inverse-rules
algorithmto theotherswe needo furtherprocessherules.
Specifically we needto expandthe querywith every possi-
ble combinationof inverserules. However, expandingthe
qguerywith theinverserulesturnsoutto repeatmuchof the
work donein the secondphaseof the bucket algorithm.

In the experimentsdescribedn Section5 we consider
anextendedversionof theinverse-ruleglgorithmthatpro-
ducesaunionof conjunctive queriesby expandingthedef-
initions of theinverserules. We expandedhe subgoalsof
the query one at a time, so we could stop an expansion
of the queryat the momentwhenwe detectthata unifica-
tion for a subsetof the subgoalswill notyield a rewriting
(therebyoptimizing the performanceof the inverse-rules
algorithm). We show thatthe inverse-rulesalgorithm can
perform much better than the bucket algorithm, but the
MiniCon algorithm scalesup significantly betterthan ei-
theralgorithm.

4 The MiniCon Algorithm

The MiniCon algorithmbegins lik e the bucket algorithm,
consideringwhich views containsubgoalghat correspond
to subgoalsn thequery However, oncethealgorithmfinds
a partial mappingfrom a subgoalg in the queryto a sub-
goal g; in aview V, it changegerspectie andlooks at
thevariablesn the query Thealgorithmconsiderghejoin
predicatesn the queryandfindsthe minimal additionalset
of subgoalghatneedto bemappedo subgoalsn V', given
thatg will bemappedo ¢;. This setof subgoalandmap-
ping informationis calleda MiniCon Description (MCD),
and canbe viewed as a generalizatiorof buckets. In the
secondphase the algorithm combinesthe MCDs to pro-
ducetherewritings. It is importantto notethatbecausef
the way we constructthe MCDs, the MiniCon algorithm
doesnot requirecontainmenthecksin the secondphase,
giving it anadditionalspeedugomparedo the bucket al-
gorithm. Section4.1 describeghe constructionof MCDs,
andSection4.2 describeghe combinationstep. The proof
of correctnessf thealgorithmis omittedfor lack of space,
but is describedn thefull versionof this paper[28].



4.1 Forming the MCDs

We begin by introducinga few termsthat are usedin the
descriptionof the algorithm. Given a mappingr from
Vars(Q) to Vars(V'), we saythata view subgoalg; cov-
ersaquerysubgoaly if 7(g) = g1.

A MCD is a mappingfrom a subsetof the variables
in the queryto variablesin one of the views. Intuitively,
a MCD representa fragmentof a containmentmapping
from the queryto the rewriting of the query The way in
which we constructthe MCDs guaranteeshat thesefrag-
mentscanlaterbe combinedseamlessly

As seenin our example,we needto considermappings
from the queryto specialization®f the views, wheresome
of theheadvariablesnayhave beenequatede.g.,V6(x,x)
insteadof V6(x,y) in our example). Hence,every MCD
has an associatechead homomorphism. A headhomo-
morphismh on aview V' is a mappingh from Vars(V)
to Vars(V) thatis the identity on the existential vari-
ables,but may equatedistinguishedvariables,i.e., for ev-
ery distinguishedvariable z, h(z) is distinguished,and
h(z) = h(h(z)). Formally, we defineMCDs asfollows.

Definition 4.1 (MiniCon Descriptions) A MCD C for
a query Q over a view V is a tuple of the form
(he, V(Y)e, o, Ge) where:
e h¢ isaheadhomomorphisnonV,
e V(Y)c is theresultof applyinghc to V, i.e.,Y =
hc(A), whereA arethe headvariablesof V/,
e pc is a partial mapping from Vars(Q) to
he(Vars(V))
e (¢ isasubsebf thesubgoalsn @ whicharecovered
by somesubgoalin k¢ (V') andthemappingpc (note:
notall suchsubgoalsarenecessarilyncludedin GC)D.

In words, p¢ is a mappingfrom @ to the specializa-
tion of V' obtainedby the headhomomorphismh¢. G¢ is
a setof subgoalof @ thatwe cover by the mappingyc.
Propertyl below specifieghe exactconditionswe needto
considewhenwe decidewhich subgoalgo includein G¢.
Note that V (V)¢ is uniquely determinedby the otherel-
ementsof a MCD, but is partof a MCD specificationfor
clarity in our subsequendiscussionsFurthermorethe al-
gorithmwill not considerall the possibleMCDs but only
thosein which h¢ is the leastrestrictve headhomomot
phism necessaryn orderto unify subgoalsof the query
with subgoalsn aview.

The mappingyc of aMCD C may mapa setof vari-
ablesin @ to the samevariablein k¢ (V). In our discus-
sion, we sometimeeedto referto a representatie vari-
ableof sucha set. For eachsuchsetof variablesin Q we
choosea representatie variablearbitrarily, exceptthatwe
choosea distinguishedvariablewheneer possible. For a
variablez in Q, EC,,. (z) denotesherepresentate vari-
ableof the setto which z belongs.EC,,, () is definedto
betheidentity on ary variablethatis notin Q.

Theconstructiorof the MCDs s basedn thefollowing
obsenationon the propertiesof queryrewritings.

procedurdormMCDs(Q, V)
/x @ and) areconjunctie queries.x/

c=0.
For eachsubgoaly € @
Forview V' € V andevery subgoal € V
Let h betheleastrestrictve headhomomorphisnon V'
suchthatthereexistsa mappingy, s.t.¢(g) = h(v).
If h andy exist, thenaddto C ary new MCD C
thatcanbeconstructedvhere:
(a) pc (resp.hc) is anextensionof ¢ (resp.h),
(b) G¢ is theminimal subsebf subgoalof @ suchthat
Gc¢, pc andhe satisfyPropertyl, and
(c) it is notpossibleto extendy andh to anMCD that
coversfewer subgoalghanGc.
ReturnC
Figurel: Firstphaseof theMiniCon algorithm: FormingMCDs.
Note that condition (b) minimizesG. given a choiceof h¢c and
pc, andis thereforenotredundantvith condition(c).

V(Y) | h | ® | G
V5(cd) | c—c,d—d | x—c,y—d |3
V6(f,f) f—fh—f Xx—fiy—f 1,2,3

Figure2: MCDs formedaspartof our example

Property 1 Let C be a MCD for @ over V. Then C can

only be used in a non-redundant rewriting of @ if the fol-

lowing conditions hold:

C1. For each head variable x of Q which isin the domain
of pc, pc(z) isahead variablein he (V).

C2. If pc(x) is an existential variable in he(V), then
for every ¢, subgoal of @, that includes = (1) all
the variables in g are in the domain of p¢, and (2)

ec(g) € he(V)

ClauseClisthesameasin thebucketalgorithm.Clause
C2 capturesthe intuition we illustratedin our example,
whereif avariablex is part of a join predicatewhich is
notenforcedby theview, thenz mustbein the headof the
view sothejoin predicatecanbe appliedby anothersub-
goalin therewriting. In ourexample,clauseC2wouldrule
out the useof V4 for query Q1 becausehe variableb is
not in the headof V4, but the join predicatewith Same-
Topic(x,y) hasnotbeenappliedin V4.

The algorithmfor creatingthe MCDs is showvn in Fig-
ure 1. Considerthe applicationof the algorithmto our ex-
amplewith the query Q1 andthe views V4, V5, and V6.
The MCDsthatwill becreatedareshonvnin Figure2.

We first considerthe subgoalcites(x,y) in the query
As discussedbove, the algorithmdoesnot createa MCD
for V4 becauseslauseC?2 of Propertyl would be violated
(the propertywould requirethat V4 alsocoverthe subgoal
sameTopic(x,y) sinceb is existentialin V4 ). Forthesame
reasonno MCD will becreatedor V4 evenwhenwe con-
siderthe othersubgoalsn the query

In a sensethe MiniCon algorithm shifts someof the
work doneby the combinationstepof the bucketalgorithm
to the phaseof creatingthe MCDs. The bucket algorithm
will discoverthatV4 is notusablefor thequerywhencom-
biningthebuckets.However, thebucketalgorithmneedgo
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discoverthis mary times(eachtimeit considerd/4 in con-
junction with anotherview), andevery time it doesso, it
usesa containmentheck,which is muchmoreexpensve.
Hence aswe show in thenext sectionwith alittle moreef-
fort spentin thefirst phasethe overall performanceof the
MiniCon algorithm outperformsthe bucket algorithmand
theinverse-ruleglgorithm.

Remark 2 (covered subgoals) Whenwe constructa MCD
C, we mustdeterminethe setof subgoalof thequeryG¢
that are coveredby the MCD. The algorithm includesin
G¢ only the minimal setof subgoalsthat are necessary
in orderto satisfy Propertyl. To seewhy this is not an
obvious choice,supposeave have the following queryand
views:

Q1'(x) :- cites(x,y),cites(z,x), inSIGMOD(x)

V7(a) :- cites(a,b),inSIGMOD(a)

V8(c) :- cites(d,c),inSIGMOD(c)

One can also consider including the subgoal in-
SIGMOD(X) in the setof coveredsubgoalsfor the MCD
for both V7 and V8, because is in the domainof their
respectre variablemappingsaryway. However, our algo-
rithm will notincludeinSIGMOD(x), andwill insteadcre-
ateaspecialMCD for it.

Thereasorfor ourchoiceis thatit enablesisto focusin
the secondphaseonly on rewritings wherethe MCD cover
mutually exclusive setsof subgoaldn thequery, ratherthan
overlappingsubsets. This yields a more efficient second
phase O

4.2 Combining the MCDs

Our methodfor constructinglCDs paysoff in thesecond
phaseof the algorithm,wherewe combineMCDs to build
the conjunctive rewritings. In this phasewe considercom-
binationsof MCDs, andfor eachvalid combinatiorwe cre-
ateaconjunctiverewriting of thequery Thefinal rewriting
is aunionof conjunctive queries.

The following property statesthat the MiniCon algo-
rithm needonly consideircombination®f MCDsthatcover
pairwisedisjoint subset®of subgoalof the query:

Property 2 Given a query (), a set of views ), and the set
of MCDsC for () over theviewsin ), the only combinations
of MCDs that can result in non-redundant rewritings of @
areof theformC1,...,C;, where

D1. G¢, U...UG¢, = Subgoals(Q), and

D2. foreveryi # j, Go, N Ge, = 0.

The fact that we only needto considersetsof MCDs
that provide partitionsof the subgoalsn the querydrasti-
cally reducegthe searchspaceof the algorithm. Further
more,eventhoughwe do notdiscussdt here thealgorithm
canalsobe extendedto outputthe rewriting in a compact
encodingthatidentifiesthe commonsubexpression®f the
conjunctiverewritings, andtherefordeadsto moreefficient
gueryevaluation.We notethathadwe chosertheaalternate
strategy in Remark2, clauseD2 would not hold.
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procedurecombineMCDS(C)
/x C areMCDs formedby thefirst stepof thealgorithm. «/
* EachMCD hastheform (he, V (Y), oo, Go, ECc). */
Givenasetof MCDs, C1, ..., Cy, we definethefunction
EC onVars(Q) asfollows:
If fori # j, ECy, (z) # ECy,(x), defineECc () to be

oneof themarbitrarily but consistentlyacrossall y for which

ECy,(y) = ECy, (z)

Let Answer = ()
For every subset’y, . . ., C, of C suchthat
Gec, U Gey, U...UGg, = subgoals(Q) and
foreveryi # j, Go, NGe; = 0 then
Defineamapping¥; ontheY;’'s asfollows:
If thereexistsavariablex € @ suchthaty;(z) =y
Ui(y) ==z
Else
¥, is afreshcopy of y
Createthe conjunctize rewriting
Q(EC(X)) = Ve, (EC(¥1(YE,))), - -
Vo (EC(Wn(Ye,)))
Add Q' to Answer.
ReturnAnswer.

Figure3: Phase: combiningthe MCDs.

Givena combinationof MCDs thatsatisfiesProperty?2,
theactualrewriting is constructedasshown in Figure3.

In the final step of the algorithm we tighten up the
rewritings by removing redundantsubgoalsas follows.
Supposea rewriting ' includestwo atomsA; and A, of
the sameview V', whoseMCDs wereC; and(C5, andthe
following conditionsare satisfied: (1) whenever A; (resp.
As) hasavariablefrom @ in positioni, then A5 (resp.A;)
eitherhasthe samevariableor a variablethatdoesnot ap-
pearin @ in that position,and (2) the rangesof ¢¢, and
e, do not overlapon existential variablesof V. In this
casewe canremove one of the two atomsby applyingto
@’ thehomomorphisnr thatis (1) theidentity on thevari-
ablesof @@ and(2) is the mostgeneralunifier of A; and
As. The underlyingjustification for this optimizationis
discussedn [21], andit canalsobe appliedto the bucket
algorithmandtheinverse-ruleslgorithm.

We notethatevenafterthis step therewritings maystill
containredundansubgoals.However, removing themin-
volvesseveraltestsfor querycontainment.

In our example, the algorithmwill considerusing V5
to cover subgoal3, but whenit realizesthat thereareno
MCDs that cover either subgoall or 2 without covering
subgoal3, it will discardV5. Thusthe only rewriting that
will beconsidereds
Q1'(x) - V6(X,X).

Thefollowing theoremsummarizeshe propertief the
MiniCon algorithm:

Theorem4.1 Given a conjunctive query Q and conjunc-
tiveviews ), both without comparison predicates, the Mini-
Con algorithm produces the union of conjunctive queries
that is the maximally-contained rewriting of @ using V.

It shouldbe notedthat the worst-caseasymptoticrun-
ning time of the MiniCon algorithmis the sameasthat of



the bucket algorithmandof theinverse-ruleslgorithmaf-
ter the modificationdescribedn Section3.2. In all cases,
therunningtime is O(n m M)™, wheren is the numberof
subgoalsin the query m is the maximal numberof sub-
goalsin aview, and M is the numberof views.

Thenext sectiondescribegxperimentalesultsshaving
thedifferencedetweerthethreealgorithmsin practice.

5 Experimental Results

The goal of our experimentswas twofold. First, we
wantedto comparethe performanceof the bucket algo-
rithm, theinverse-ruleslgorithm,andMiniCon algorithm
in differentcircumstancesSecondwe wantedto validate
that MiniCon can scaleup to large numberof views and
large queries.Our experimentsconsideredhreeclasseof
gueriesandviews: (1) chainqueries,(2) starqueriesand
(3) completequeries,all of which arewell known in the
literature[25].

Tofacilitatethe experimentsyweimplementedirandom
guerygeneratomwhich enablesus to controlthe following
parametergl) the numberof subgoaldn the queriesand
views, (2) thenumberof variablegpersubgoal(3) thenum-
ber of distinguishedrariables,and(4) the degreeto which
predicatenamesare duplicatedin the queriesand views.
Theresultsareaveragedver multiple runsgeneratedvith
the sameparametergat least40, and usually more than
100). An importantvariableto keepin mind throughout
the experimentds the numberof rewritings that canactu-
ally beobtained.

In most experimentswe consideredjueriesand views
that hadthe samequery shapeandsize. Our experiments
wereall run on a dual Pentiumll 450 MHz runningWin-
dowsNT 4.0with 512MB RAM. All of thealgorithmswere
implementedn Javaandcompiledto anexecutable.

5.1 Chain queries

In the context of chainquerieswe considerseveral cases.
In the first case,shovn in Figure 4(a), only the first and
last variablesof the queryandthe view aredistinguished.
Therefore,in orderto be usable,a view hasto be identi-
cal to the query andasa resultthereare very few rewrit-
ings. The bucket algorithmperformsthe worst,becausef
the costof the query containmentchecksit needsto per
form (it took on the order of 20 secondsfor 5 views of
size10 subgoalsandhencewe do not evenshaw it onthe
graph).Theinverse-ruleslgorithmandthe MiniCon algo-
rithm scalelinearly in the numberof views, but the Mini-
Conalgorithmoutperformgheinverse-rulesalgorithmby
afactorof about5 (andthis factoris independendf query
andview size). In fact, the MiniCon algorithmcanhandle
morethan 1000 views with 10 subgoalseachin lessthan
onesecond.

The differencein the performancéetweertheinverse-
rulesalgorithmandthe MiniCon algorithmin this context
andin othersis dueto the seconchhase®f thealgorithms.
In this phasetheinverse-ruleglgorithmis searchindgor a
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unification of the subgoalsf the querywith headsof in-
verserules. The MiniCon algorithmis searchingor sets
of MCDs thatcoverall thesubgoalsn thequery, but cover
pairwisedisjoint subsets.Hence,the MiniCon algorithm
is searchinga much smaller space,becausethe number
of subgoalss smallerthanthe numberof variablesin the
qguery Moreoverthe MiniCon algorithmis performingbet-
ter becausén thefirst phaseof the algorithmit alreadyre-
movedfrom consideratiowviewsthatmaynotbeusabledue
to violationsof Propertyl. In contrasttheinverse-rulesl-
gorithm musttry unificationsthatinclude suchviews and
thenbacktrack.The amountof work thatthe inverse-rules
algorithmwill wastedependsn the orderin whichit con-
sidersthe subgoalsn the querywhenit unifiesthemwith
the correspondingnverserules. If afailureappeardatein
the ordering,morework is wasted.Theimportantpointto
noteis thatthe optimal orderin which to considerthe sub-
goalsdependsheaily on the specificviews available and
is, in general,very hardto find. Hence,it would be hard
to extend the inverse-rulesalgorithm suchthat its second
phasewould comparein performanceo that of the Mini-
Conalgorithm.

In the secondcasewe considey shavn in Figure 4(b),
theviews areshorterthanthe query(of lengths2, 3 and4,
while the queryhas12 subgoals)In this casethe MiniCon
algorithmstills scaledinearly while theinverse-rulesalgo-
rithm growsfaster For example for 90views,theMiniCon
algorithmruns 3 times fasterthan the inverse-rulesalgo-
rithm, andfor 180viewsit runs6 timesfaster

Finally, thoughnot shovn here,we alsoconsideredn-
othercasein which all the variablesin the views aredis-
tinguished. In this case thereare mary rewritings (often
morethan 1000),and hencethe performanceof the algo-
rithmsis limited becaus®f thesheemumberof rewritings.
Sincevirtually all combinationgproducecontainedrewrit-
ings,any completealgorithmis forcedto form anexponen-
tial numberof rewritings. TheMiniCon algorithmstill per
forms betterthanthe inverse-rulesalgorithmby anywhere
betweenl0% betteranda factorof 2, but with queriesand
views with 5 subgoalsthe algorithmstake on the orderof
10 seconddor 10 views. It shouldbe emphasizedhatthe
differencein performancéetweerthe MiniCon algorithm
andthe inverse-rulesalgorithmin this caseis only dueto
the smallersearctspacebeingconsideredy the MiniCon
algorithm.

5.2 Star and completequeries

In starqueries thereexists a uniquesubgoalin the query
that is joined with every other subgoal,and thereare no
joins betweerthe othersubgoals.In the casesf two dis-
tinguishedvariabledn theviewsor all view variableseing
distinguished the performanceof the algorithmsmirrors
the correspondingasesf chainqueries.Hence,we omit
thedetailsof theseexperiments Figure5(a)shovstherun-
ning timesof theinverse-rulealgorithmandthe MiniCon
algorithmin the casewherethe distinguishedvariablesin
theviews aretheonesthatdo not participaten thejoins. In
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Figure4: Experimentaresultsfor chainqueries.The graphon theleft considersgwo distinguishedsariablesin the views, andshavs

thatthe MiniCon algorithmandthe inverse-rulesalgorithmsboth scaleup to hundredsf views. The MiniCon algorithmoutperforms
theinverse-ruleslgorithmby afactorof 5. In theright graph,theviews areof lengths2, 3 and4, andthequeryhas12 subgoalsin this

casethe MiniCon algorithmstill scaledinearly, while theinverse-ruleslgorithmdoesnot.

thiscasetherearerelatively few rewritings. We seethatthe
MiniCon algorithmscalesup muchbetterthantheinverse-
rulesalgorithm. For 20 views with 10 subgoalsach,the
MiniCon algorithmruns 20 timesfasterthanthe inverse-
rulesalgorithm.Herethe explanationis thatthefirst phase
of theMiniCon algorithmis ableto prunemary of theirrel-
evantviews, whereagheinverse-rulesalgorithmdiscovers
thattheviews areirrelevantonly in the secondphaseand
oftenit mustbediscoreredmultiple times.

An experimentwith similar settingsbut for complete
gueriesis shavn in Figure5(b). In completequeriesevery
subgoals joinedwith every othersubgoain thequery As
the figure shavs, the MiniCon algorithm outperformsthe
inverse-rulesalgorithmby a factorof 4 for 20 views, and
by a factorof 6 for 50 views, which is lessof a speedup
thanwith of starqueries. The explanationfor this is that
therearemorejoinsin thequery andthustheinverse-rules
algorithmis ableto detectuseleswviewsearlierin its search
becauséailuresto unify occurmorefrequently Finally, we
alsoran someexperimentson queriesandviews thatwere
generatedandomlywith no specificpattern. The results
shaved that the MiniCon algorithm still scalesup grace-
fully, but the behavior of the inverse-rulesalgorithm was
too unpredictablgthoughalwaysworsethanthe MiniCon
algorithm), dueto the natureof whenthe algorithmsdis-
coverthatarule cannotbeunified. Additional experiments
areneededn orderto draw ary conclusionasto how the
algorithmsperformfor completelyrandomqueries.

5.3 Summary

In summaryour experimentshavedthefollowing points.
First, the MiniCon algorithm scalesup to large numbers
of views andsignificantlyoutperformshe othertwo algo-
rithms. This point is emphasizedy Table 1, wherewe
tried to pushthe MiniCon algorithmto its limits. Thetable
considersiumberof subgoal@andnumberof viewsthatthe
MiniCon algorithmis ableto procesgjiven10 secondsin
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| Querytype | Distinguished] # of subgoals| # of views |
Chain All 3 45
Chain All 12 3
Chain Two 5 9225
Chain Two 99 115
Star NonJoined 5 12235
Star NonJoined 99 35
Star Joined 10 4520
Star Joined 99 75

Table 1: The numberof views thatthe MiniCon algorithmcan
processn underl0 secondsn varioussituations

somecasesthe algorithmcanhandlethousand®f views,
which is a magnitudethatwasclearly out of reachof pre-
viousalgorithms.

Second the experimentsshaved that the bucket algo-
rithm performedmuchworsethanthe othertwo algorithms
in all casesMore interestingwasthe comparisorbetween
the MiniCon algorithmandtheinverse-ruleglgorithm. In
all caseghe MiniCon algorithmoutperformedheinverse-
rulesalgorithm,thoughby differing factors. In particular
the performanceof the inverse-rulesalgorithm was very
unpredictable. The problemwith the inverse-rulesalgo-
rithm is thatit discorersmary of the interactionsbetween
theviews in its secondphase andthe performancen that
phaséds heaily dependenbntheorderin whichit consid-
ersthe query subgoals.However, sincethe optimal order
dependsheavily on the interactionwith the views, a gen-
eralmethodfor orderingthesubgoalsn thequeryis hardto
find. Finally, all threealgorithmsarelimited in casesvhere
the numberof resultingrewritings is especiallylarge since
acompletealgorithmmustproduceanexponentiainumber
of rewritings.

6 Comparison predicates

The effect of comparisorpredicatesn the problemof an-
sweringqueriesusing views is quite subtle. If the views



Star queries with 10 subgoals with
distinguished non-joined variables

0.8

o
o

O
[N}

—

Time
(in Seconds)
o
i

o

e
1 3 5 7

e \iniCon Algorithm
Bucket Algorithm

9 11 13 15 17 19
Inverse Rules

Number of views

Complete queries with 10 subgoals and
three distinguished variables
e \MiniCon Algorithm

0.08 -

0.06 | Inverse Rules

0.04

Time
(in Seconds)

0.02

0 —— \ \ \
0 10 20 30 40 50

Number of Views

()

(b)

Figure5: Theleft figure shavs the runningtimesfor starquerieswherethe distinguishedvariablesin the views arethosenot partici-
patingin thejoins. The graphon theright shavs runningtimesfor completequerieswith a similar setting. In both caseghe MiniCon

algorithmsignificantlyoutperformsheinverse-ruleslgorithm.

containcomparisompredicatedut thequerydoesnot, then
theMiniCon algorithmwithout any changestill yieldsthe
maximally-containedjuery rewriting. On the otherhand,
if the query containscomparisonpredicatesthenit fol-

lows from [1] thattherecanbe no algorithmthatreturnsa
maximally-containedewriting, evenif we considerrewrit-

ings that arerecursve datalogprogramg(let aloneunions
of conjunctive queries).

In this sectionwe presentan extensionto the MiniCon
algorithmthatwould (1) alwaysfind only correctrewritings
(2) find the maximally-containedewriting in mary of the
commoncasesin which comparisonpredicatesare used,
and(3) is guaranteedo producethe maximally-contained
rewriting whenthe querycontainsonly semi-interval con-
straints, i.e., when all the comparisonpredicatesin the
queryareof theformz < corz < ¢, wherez is a vari-
ableandc is a constant(or they areall of theformz > ¢
or x > c). We showv experimentsdemonstratinghe scale
up of the extendedalgorithm. Finally, we shov an exam-
ple thatprovidesanintuition for which caseghealgorithm
will notcapture.

In our discussionyve referto the setof comparisorsub-
goalsin aquery@ asI(QQ). Givena setof variablesX,
we denoteby 75 (Q) the subsetof the subgoalsn 1(Q)
thatincludes(1) only variablesin X or constantsand (2)
containsat leastone existential variableof . Intuitively,
15 (Q) denoteghe setof comparisorsubgoalsn thequery
thatmust be satisfiedby the view, if X is the domainof a
MCD. We assumewithout loss of generalitythat I(Q) is
logically closed,.e., thatif I(Q) | g, theng € I(Q). We
canalwayscomputethelogical closureof I(Q) in timethat
is quadratian thesizeof Q [34].

We malke three changesto the MiniCon algorithm to
handle comparisonpredicates. First, we only consider
MCDs C thatsatisfythefollowing conditions:

1 If x € Vars(Q), ¢c(z) is an existentialvariablein
he(V) andy appearsn thesamecomparisoratomas
x, theny mustbein thedomainof p¢.
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2. If X is thesetof variablesin the domainof the map-
pingpc, thenZ(hc (V) E ec(lx).

Thefirst conditionis anextensionof Propertyl, andthe
secondcondition guaranteeshe comparisonsubgoalsin
the view logically entailthe relevantcomparisorsubgoals
in the query Note that becauseof the secondcondition,
theonly subgoalsn 7z (Q) thatmaynot be satisfiedby V/
mustincludeonly variablesthat o mapsto distinguished
variablesof V. As aresult,sucha subgoalcansimply be
addedto therewriting afterthe MCDs arecombined.

The secondchangeis that we disallowv all MCDs that
constrainvariablesto be incompatiblewith the variables
they mapin thequery For example,if a queryhasa sub-
goalx > 17 anda MCD mapsx to aview variablea, and
a < 5isin theview, thenwe canignorethe MCD.

Thethird changewe make to the MiniCon algorithmis
thefollowing: afterforming arewriting 2’ by combininga
setof MCDs, we addthe subgoalEC(g) for ary subgoal
of I(Q) thatis not satisfiedby @'.

Example 6.1 Considera variationon our running exam-
ple, wherethe predicateyear denoteghe yearof publica-
tion of a paper
Q2(x) :- iInSIGMOD(x), cites(x,y), year(x,rl),
year(y,r2), r1 > 1990, r2 < 1985
V7(a,sl) :- inSIGMOD(a), cites(a,b), year(a,s1),
year(b,s2), s2 < 1983
V8(a,sl) :- inSIGMOD(a), cites(a,b), year(a,sl),
year(b,s2), s2 < 1987
Ouralgorithmwouldfirst consideN7 with themapping
{x —a, y—b rl - sl r2 - s2}. In thiscasethe
subgoak2 < 1985 is satisfiedby theview, butrl > 1990
is not. However, sincesl is adistinguished/ariablein V7,
thealgorithmcancreatetherewriting:
Q2'(x) :- V7(x,r1), r1 > 1990
Whenthe algorithm considersa similar variablemap-
ping to V8, it will noticethatthe constrainton r2 is not
satisfiedandsinceit is mappedo anexistentialvariablein
V8, no MCD is created. m|



Example 6.2 Thefollowing exampleprovidesanintuition
for which rewritings our extendedalgorithmwill not dis-
cover. Considerthefollowing queryandview:

Q(u) :-e(u,v),u<v
V1(a) :- e(a,b), e(b,a)

Thealgorithmwill notcreateary MCD because¢hesub-
goalu < v in thequeryis notimplied by the view. How-
ever, thefollowing is a containedewriting of Q.

Q'(u) - V1(u)

In orderto show thatthe query containsthe rewriting, we
needto considertwo differentcontainmenmappingsde-
pendingon whethera < b ora > b [17]. In eachof these
mappingsthesubgoak(u, v) is mappedo adifferentsub-
goal. Our algorithmwill only find rewritings in which the
targetof themappingfor a subgoalin thequeryis thesame
for ary possibleorderonthevariables. m|

Figure 6 shavs sampleexperimentsthatwe ranon the
extendedalgorithmin the caseof chainqueries.In the ex-
perimentswe addedto the queriesandviews a numberof
comparisorsubgoal®f theformz < corz > c.

Theexperimentshav thatthesamerendswe saw with-
out comparisorpredicateappeahereaswell. In general,
the additionof comparisorpredicateseduceghe number
of rewritingsbecausenoreviews canbedeemedrrelevant.
Thisisillustratedin Figure6(b)whereall of thevariablesn
theviews aredistinguishedandthereforewithout compari-
sonpredicatesherewould be mary morerewritings. How-
ever, sincethecomparisorpredicateseducethe numberof
relevant views, the algorithmwith comparisorpredicates
scalesup to a larger numberof views. In Figure6(a), the
numberof rewritings is very small, andthe extra overhead
of processinghe comparisorpredicatecauseslow down
of afactorof 4. This factorcanbe decreaseavith further
optimizationsof our comparisorpredicatecodethatwe did
notexplore.

7 RelatedWork

Algorithmsfor rewriting queriesusingviews aresureyed
in [20]. Most of the previous work on the problem fo-
cusedon developing algorithmsfor the problem, rather
that on studyingtheir performance.In additionto the al-
gorithmsmentionedpreviously, algorithmshave beende-
velopedfor conjunctive querieswith comparisonpredi-
cates[35], queriesandviews with groupingandaggreja-
tion [15, 31, 7, 13], OQL queries[11], and queriesover
semi-structureddata [26, 4]. The problem of answer
ing queriesusing views hasbeenconsideredor schemas
with functionalandinclusion dependenciefl0, 14, lan-
guageghatquerybothdataandschemdg?23], anddisjunc-
tive views [2]. Clearly, eachof the above extensiongo the
basicproblemrepresentsan opportunityfor a possibleex-
tensionof the MiniCon algorithm. Mitra [24] developeda
rewriting algorithmthatalsocapturegheintuition of Prop-
erty 1, andthuswould likely leadto better performance
thanthe bucket algorithmandtheinverse-ruleglgorithm.
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Severalworks discusseaxtensiongo queryoptimizers
that try to make useof materializedviews in query pro-
cessing33, 6, 3, 27, 36]. In somecasesthey modifiedthe
System-Rstyle join enumeratiorcomponen{33, 6], and
in othersthey incorporatedsiew rewritings into therewrite
phaseof the optimizer[36, 27]. Theseworks shovedthat
consideringhepresencef materializeds/iews did notneg-
atively impactthe performancef the optimizer However,
in theseworksthe numberof views tendedto berelatively
small. In [27], the authorsconsidera more generalset-
ting wherethey useaconstraintanguageo describeviews,
physicalstructuresandstandardypesof constraints.Un-
like our algorithm, the above works are designecdto pro-
duceasingle conjunctive rewriting thatis equivalentto the
guery and hasthe least cost, whereaswe searchfor the
maximally-containedewriting.

8 Conclusions

This papermakestwo importantcontributions. First, we
presentnew algorithmfor answeringqueriesusingviews,
andsecondywe presenthefirst experimentakvaluationof
suchalgorithms. We beganby analyzingthe two existing
algorithmsthebucketalgorithmandtheinverse-ruleglgo-
rithm, andfoundthatthey have significantlimitations. We
developedthe MiniCon algorithm, a novel algorithm for
answeringqueriesusing views, and shoved that it scales
gracefully and outperformsboth existing algorithms. As
a resultof our work, we have establishedhat answering
gueriesusingviews canbe doneefficiently for large-scale
problems.Finally, we describedan extensionof our algo-
rithm to handlecomparisompredicates As we show in the
extendedversionof the paper the MiniCon algorithmcan
alsobe extendedin a straightforvard fashionto dealwith
access-patterimitations[30] in the samespirit of [10].

An interestingdirection of future researchs to extend
the MiniCon algorithm to the contect of using material-
ized views for queryoptimizationandto considerbagse-
mantics. In this context, we are interestedn the cheap-
est rewriting of the query Concevably, it is possibleas
in [33, 6] to modify the secondhaseof the MiniCon algo-
rithm suchthatit combineshe MCDs in a bottom-updy-
namicprogrammingstyle,andhencesavesonly the cheap-
estrewriting. However, for thealgorithmto guarantedind-
ing thecheapestewriting, we now needto considerrewrit-
ingsthatcontainlogically redundansubgoals.

Example 8.1 Supposewe have the following query and
views:

Q(xy) - el(x;z), e2(z\y)

Vi(xy) - el(xy)

V2(zy) - e2(z)y)

V3(x) - el(x,z), e2(z)y)

If the join of el ande2 is very selectve, the rewriting of
the querythatwill yield the cheapestjueryexecutionplan
maybe:

a'(xy) - v3(x), vi(x,y), v2(z,y).
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Figure6: Experimentswvith the MiniCon algorithmandcomparisorpredicates The left graphshavs the samecaseasin Figure4(a)
and shaws that addingcomparisorpredicatesonly slonvs down the runningtime by a factorof 4. The graphon the right shaws the
runningtimeswhenall of thevariablesin theviews aredistinguished.

However, the MiniCon algorithmwould not createa MCD
thatincludesV3, becauset would violate Propertyl, and
would hencemissthis rewriting. m|

Hence to extendthe MiniCon algorithmto this context
we needto establisha boundon the size of rewritings that
needto be consideredandto relaxthedefinitionof MCDs.
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