
1

Lecture 7: Command Languages
and Usability

Chapter 7

Command Language

• Definition
– Interactive communication with a computer that

requires the user to recall the notation and
initiate the action by keyboarding textual
elements. Command languages are typically
interpreted a single action at a time.

Example Command Language
(UNIX)

> ls -l *.*
foo.dat slides.prt exer.prt

> rm foo.dat
> ls -l *.*

slides.prt exer.prt

2

Elements of Language

• Lexicon
– Words and punctuation

• Syntax
– Sequence of words to create a correct sentence

• Semantics
– “meaning” of a sentence based on the words

• Pragmatics
– How sentences are used in sequence (discourse)
– Context
– Inference

Example Command Language
(UNIX)

> ls -l *.*
foo.dat slides.prt exer.prt

> rm foo.dat
> ls -l *.*

slides.prt exer.prt

Lexical, syntax, semantics, pragmatics……

Usability Questions

• Does the language support necessary
functions?

• Is it fast to enter a command?
• Is it easy to recognize what the command

might do?
• Is it easy to recall a command?
• Are there few errors when using the

language?

3

UNIX:
A case study

• Study done at Bell Labs in 1981-1982
– Automatic logging of all Unix command transactions in

the lab
– Analyzed

• Frequency of command usage
• Transitions between commands (tasks)
• Error rates of commands

• Published by Kraut et al. In Computer-Human
Interaction Conference (CHI) proceedings1983.

UNIX command usage
(Kraut et al. CHI ‘83)

UNIX command transitions
(Kraut et al. CHI ‘83)

4

UNIX
 (Kraut et al. CHI ‘83)

• 400+ possible
commands

• 20 commands (5%)
account for 70% of
usage

• 14 commands (3.5%)
account for 50% usage

%
 T

ot
al

 N
um

be
r o

f W
or

ds

Frequency of Use

Zipf distribution

UNIX error rates
 (Kraut et al. CHI ‘83)

• Types of errors
– Lexical errors (error in entering command name,

abbreviation, parameter specification). Gives message.
– Syntactic errors (error in expression of a command such

as missing parenthesis, wrong order of parameters) .
Gives message.

– Semantic errors (valid lexical and syntactic commands
but errors where you don’t get what you want). No
message.

• Error rates for individual commands ranged from
3% to 50% for expert users!

Usability Problems with UNIX

• Lexicon: Abbreviation not suggestive of function
– terse
– inconsistent
– jargon

• Syntax: Complex syntax
– Action modifier(s) object(s)

• Semantics: Underutilization of commands
– Unnecessary complexity to support many functions

leads to complexity of most frequent
– Hard to map commands to tasks

• Pragmatics: Lack of feedback

5

What this study doesn’t tell us

• How hard it is to learn Unix
– How much time does it take to get skilled?
– Different types of users

• How to improve the design

The Basic Goals
of Language Design (Chap. 7.1)

• Precision
• Compactness
• Ease in writing and reading
• Speed in learning
• Simplicity to reduce errors
• Ease of retention over time

Higher-Level Goals
of Language Design (Chap. 7.1)

• Close correspondence between reality and the
notation

• Convenience in carrying out manipulations
relevant to user's tasks

• Compatibility with existing notations --
“consistency”

• Flexibility to accommodate novice and expert
users

• Expressiveness to encourage creativity
• Visual appeal

6

Aspects of Design

• Functionality (Semantics and Pragmatics)
– Chap 7.2

• Syntax
– Chap 7.2

• Lexicon
– Chap 7.3

Functionality to Support
User’s Tasks (Chap 8.2)

• determine functionality of the system by studying users' task domain
– Text editing, operating system, gaming, airline reservation, database query

• create a list of task actions and objects
• abstract this list into a set of interface actions and objects
• represent low-level interface syntax
• create a table of user communities and tasks, with expected use frequency
• determine hierarchy of importance of user communities (i.e. prime users)
• evaluate destructive actions (e.g. deleting objects) to ensure reversibility
• identify error conditions and prepare error messages
• allow shortcuts for expert users, such as macros and customizing system

parameters

Figure 8.1 Task Transition
Diagram

(I think the UNIX one in lecture 7 is better)

Example:
oREDRAW
iREADFILECMD
iFILENAME
oWAITMSG

o is output
i is input

7

Conceptual actions vs.
commands

Syntax: Command-Organization
Strategies
(Chap 7.2)

A unifying interface concept or metaphor aids
– learning
– problem solving
– retention

Designers often err by choosing a metaphor closer to machine domain than to
the user's task domain.

Good metaphor: Desktop with folders, files, trashcan

Types of command structure
Simple command set
Commands plus arguments/options
Hierarchical command structure

Simple command set

• Each command is chosen to carry out a single task. The number of
commands match the number of tasks.

• For small number of tasks, this can produce a system easy to learn and
use.

• E.g. the vi editor of Unix (Figure 8.2, page 323)
H go to home position
L go to last line
M go to middle line
h go left one space
fx find the character x going forward
Fx find the character x going forward

8

Command plus arguments/options

Command plus arguments
• Follow each command by one or more arguments that indicate objects to be

manipulated, e.g.
– COPY FILEA, FILEB
– DELETE FILEA
– PRINT FILEA, FILEB, FILEC

• Keyword labels for arguments are helpful for some users, e.g. COPY
FROM=FILEA TO=FILEB.

• Commands may also have options to indicate special cases, e.g.:
– PRINT/3,HQ FILEA
– PRINT (3, HQ) FILEA
– PRINT FILEA -3, HQ

to produce 3 copies of FILEA on the printer in the headquarters
building.

• Error rates and the need for extensive training increase with the number of
possible options.

Hierarchical command structure
(orthogonality)

– The full set of
commands is
organized into a
tree structure

– 5x3x4 = 60 tasks
with 5 command
names and 1 rule
of formation

MOVE

Remote
printer

COPY

ScreenDirectoryREMOVE

Local printerProcessDISPLAY

FileFileCREATE
DestinationsObjectsActions

The Benefits of Structure (Chap 8.4)
Human learning, problem solving, and memory are greatly facilitated by
meaningful structure.

• Beneficial for
– task concepts
– computer concepts
– syntactic details of command languages

Consistent Argument Ordering

Inconsistent order of arguments Consistent order of arguments
SEARCH file no, message id SEARCH message id, file no
TRIM message id, segment size TRIM message id, segment size
REPLACE message id, code no REPLACE message id, code no
INVERT group size, message id INVERT message id, group size

What is the best?

9

Symbols versus Keywords

Command structure affects performance

CHANGE ALL "KO" TO "OK"RS: /KO/, /OK/; *

LI ST 10 LI NESLI ST; 10

BACKWARD TO "TOOTH"FI ND: /TOOTH/; -1

English-like Keyword EditorSymbolic Editor

What is the best?

Hierarchical Structure
and Congruence

Sources of structure that have proved advantageous include:

• Positional consistency
• Grammatical consistency
• Congruent pairing

• Hierarchical form

(meaningful pairs
of opposites)

What is the best?

Naming and Abbreviations
(Chap 7.3)

There is often a lack of consistency or obvious strategy for construction of
command abbreviations.

Specificity Versus Generality

abc-ababc-adbcDiscriminating non-words (icons)

MIKGACNon-discriminating non-words (nonsense)
correctalterGeneral words (frequent, non-discriminating)
viewwalkFrequent, non-discriminating words
perceiveambleInfrequent, non-discriminating words
removeaddFrequent, discriminating words
deleteinsertInfrequent, discriminating words

What is best? Infrequent, discriminating What is worst? general

10

Familiarity of Names

• Command names chosen by designers may or may not be
the ones anticipated by users

• Users can correctly guess the name chosen by designers
for a function or object only about 10%-15% of the time
(Furnas, 1985)

• If system allows the two most common synonyms, then hit
rate goes up to 80%-90%

• Example: logout, logoff, bye

Six Potential
Abbreviation Strategies

1. Simple truncation: The first, second, third, etc. letters of each command.
(There is some evidence that this is the preferred abbreviation strategy for users.

2. Vowel drop with simple truncation: Eliminate vowels and use some of what remains.
3. First and last letter: Since the first and last letters are highly visible, use them.
4. First letter of each word in a phrase: Use with a hierarchical design plan.
5. Standard abbreviations from other contexts: Use familiar abbreviations.
6. Phonics: Focus attention on the sound.

Guidelines for using abbreviations

Ehrenreich and Porcu (1982) offer this set of guidelines:

• A simple primary rule should be used to generate abbreviations for most items; a simple secondary rule should be
used for those items where there is a conflict.

• Abbreviations generated by the secondary rule should have a marker (for example, an asterisk) incorporated in
them.

• The number of words abbreviated by the secondary rule should be kept to a minimum.
• Users should be familiar with the rules used to generate abbreviations.
• Truncation should be used because it is an easy rule for users to comprehend and remember. However, when it

produces a large number of identical abbreviations for different words, adjustments must be found.
• Fixed-length abbreviations should be used in preference to variable-length ones.
• Abbreviations should not be designed to incorporate endings (ING, ED, S).
• Unless there is a critical space problem, abbreviations should not be used in messages generated by the computer

and read by the user.

11

Command-language guidelines

NOTE: There are often trade-offs in design for different users
- Having abbreviation makes it faster to type for experts

but harder to learn for novices.

