
Working Through Task-Centered System
Design
Saul Greenberg
Department of Computer Science, University of Calgary, Canada
saul@cpsc.ucalgary.ca

This chapter presents a 'how-to' tutorial to a version of Lewis and Rieman’s Task
Centered System Design methodology. Using an example of an interface being
developed for a catalogue store, we show in detail how a practitioner can identify
key tasks, use those tasks to do a rudimentary requirements analysis, and how one
can evaluate prototype designs through a task-centered walkthrough.
Keywords. Task centered system design, walkthroughs, scenarios, requirements
analysis.

Introduction
In 1993, Clayton Lewis and John Rieman introduced Task Centered System Design
(TCSD), a highly practical discount-usability engineering methodology (Lewis and
Reiman, 1993). At its essence, TCSD is a process where designers:

• articulate concrete descriptions of real-world people doing their real-world tasks;
• use these descriptions to determine which users and what tasks the system should

support;
• prototype an interface that satisfy these requirements; and
• evaluate the interface by performing a task-centered walkthrough.
Because TCSD is simple to learn and apply, I have been teaching it for almost a

decade within an introductory Human Computer Interaction (HCI) for computer
scientists. I could only devote about four classes to this method, so I reworked the Lewis
and Rieman material into a short form that provides students with a terse explanation of
the process, as well as a worked example that illustrates how to apply it to a problem.
Students then use TCSD in their first assignment to analyze a real world problem of their
choosing, and to develop and evaluate an interface that solves this problem. Most
students find TCSD to be an eye-opener in terms of its simplicity and effectiveness—they
are surprised at how well it informs their interface design and how well it lets them
evaluate the nuances of their designs.

This chapter summarizes my reworked approach to Task-Centered System Design. It
both paraphrases and adds to the Lewis and Rieman material. The first part of this
chapter details the main steps of the TCSD process. The second part applies this process
to an actual example.

Greenberg, S. (2002) Working through Task-Centered System Design. in Diaper, D. and Stanton, N. (Eds) The
Handbook of Task Analysis for Human-Computer Interaction. Lawrence Erlbaum Associates.
This version differs in minor ways from the published version.

Working Through Task-Centered System Design - 2 - Saul Greenberg

Phase 1. Identification
In the first phase of task-centered system design, you identify specific users of the system
and articulate example realistic tasks that they would do. Your goal is to produce a
manageable list of representative users and tasks that give realistic coverage of who
would use the system to do what kinds of tasks. To achieve this goal, you need to first
discover what tasks users do, then write these up as task descriptions, and finally validate
the descriptions to make sure they represent reality. These steps are detailed below.

A. Discovering the Tasks that Users Do

TCSD strives for realism. This means you should discover how real people do their real
tasks. Yet depending upon your situation, you may or may not be able to access these real
people. Consequently, you should select one of the approaches below that best fits your
situation.

The ideal: Observing and/or interviewing the real end user. Get in touch with current or
potential users. These users may now be using paper methods, competing systems, or
antiquated systems for doing their tasks. Observe them as they do their task activities,
and interview them about what they are doing (Beyer and Holtzblatt, 1998). For example,
if you are interested in customers who purchase items in a store, you should observe and
talk to store customers as they move about the store. These interviews and observations
are critical. They transform ‘the user’ from an abstract notion into real people with real
needs and concerns. It will help you put a face on the faceless, and will help you
understand where they are coming from.

Second best: Interviewing the end-user representative. If you absolutely cannot get in
direct contact with end users, you can carefully select and interview end-user
representatives as stand-ins. These must be people who have direct contact with end
users, and have intimate knowledge and experience of their needs and what they do. It is
crucial that this client representative has a deep and real (rather than idealized)
understanding of what end-users actually do. People who work “in the trenches” with the
end-user are the best bet. For example, you can talk to a store’s front-line sales staff
about their customers if you cannot observe or talk to the customers directly. A better
option is to interview these front-line staff as they deal with the customers; this way you
can observe first-hand what customers do.

When all else fails: Make your beliefs of the end-users and task space explicit. If you
cannot get in touch with real end-users or their representatives, use your team members
to articulate expected end-users and tasks. Because this runs the serious risk of producing
end-user and task descriptions that bear no relation to reality, you should do this only as a
last resort. Still, you will at least produce a diverse list of expected end-users and their
tasks (because you have a diverse team), and it will put your beliefs and assumptions on

Working Through Task-Centered System Design - 3 - Saul Greenberg

the table. You can always show these to your clients later, and hopefully you will be able
to compare them to real-world situations to see if these tasks indeed reflect what real end-
users do.

No matter which approach you choose, you have to determine your stopping
conditions i.e., when you should stop gathering and generating user and task descriptons.
In practice, you will notice ever-increasing repetition as you do your observations and
interviews. You simply stop when new types of people and tasks are rare, and when it is
no longer cost-effective to continue.

B. Developing good task descriptions

You must write up the results of your observations and interviews as good task
descriptions. These task descriptions adhere to five very important criteria.

It describes what the user wants to do but does not say how the user would do it. The
description should not include any interface mechanics about how the task is actually
carried out. That is, you do not want to detail task steps that are peculiar to the system
being used. What you are really doing here is identifying the person’s goal, as well as the
concrete steps they would take to achieve this goal no matter what system was being used
(Cooper, 1999). This is important, because you will want to use these tasks to generate
several alternative designs that let a user accomplish the task in quite different ways.
Similarly, you will use these tasks to compare different interface design alternatives in a
fair way.

It is very specific. A description is concrete. It says exactly what the user wants to do,
including the actual items the user would eventually want to input (somehow) into the
system and what information or results the user will want out of it. This is important
because it provides concrete rather than imaginary data for the types of information the
system must handle.

It describes a complete job. The description should flow through all aspects of the task,
starting at the very beginning and concluding at the very end. This is important because
the complete description forces you to consider how interface features will work
together. You can also use the complete description to contrast how information input
and output is carried through a particular interface design. That is, you can ask: “Where
does information come from? Where does it go? What has to happen next?”

It says who the users are and reflects their real interests. The description should name
real people, and should include what they know or don’t know about performing the task
and using computers. This is important because the success of a design is strongly
influenced by what people know. Because you need to observe real people to do this, you
will tend to find tasks that illustrate required functionality in a person’s real world
context. If the task names real people, you can go back to them and ask them about any
information you are missing. You will eventually use this information to see if people

Working Through Task-Centered System Design - 4 - Saul Greenberg

realistically have the desire, knowledge and/or capabilities to accomplish their task on
your system design.

As a set, the task descriptions identify a broad coverage of users and task types.
Collectively, the descriptions should identify the typical ‘expected’ users, the occasional
but still important users, and the unusual users. Similarly, they should identify typical
routine tasks, infrequent but important tasks, and unexpected or odd tasks. This is
important because you will need a way to decide the coverage of your system design i.e.,
which tasks and user groups must be included in the design, and which could be left out.
Because your initial set of descriptions may have similar entries, you should reduce it by
choosing particular user and task stories that best represent your expected classes of users
and tasks. In practice, you should end up with a manageable number of descriptions that
still gives good coverage.

C. Validate the tasks.

Your final step in the identification phase is to get a reality check of your task
descriptions. You can do this by circulating a description back to the person it is
describing, or to the end-user representatives who regularly interact with them in their
task setting. These people should see if it fairly summarizes the activities. Specifically,
they should check to see if the set of descriptions adequately covers the potential end-
users of your product, if the different tasks really represent what people do, and if their
details are realistic. You should ask details omitted from the original task description, get
corrections, clarifications, and suggestions. Re-write these as corrected task descriptions.

This step is critical if you used a client representative, or if your team just ‘made up’
what they thought were good descriptions. While it may not be possible for you to
interview and observe many real clients to get the descriptions, you can probably get one
to comment on a compiled list of prototypical tasks.

Phase II. User-Centered Requirements Analysis
You will rarely design a system that handles all possible users and tasks equally well.
This could be because you do not have the budget to develop an all-encompassing
system, or because the diversity of possible users and tasks is too high to be handled by a
common system, or because you cannot cost-justify certain features. As a rule of thumb,
most systems are considered successful if they have about 90% coverage, that is, if 90%
of the people can do 90% of the tasks reasonably well. This also means that these systems
exclude 10% of the people and tasks. The next phase in TCSD is for you to decide what
people and tasks will be included or excluded from your design. This list will become
your basic user-centered requirements analysis of your system design.

Working Through Task-Centered System Design - 5 - Saul Greenberg

A. Deciding which User Types to Include

You need to identify which user types will be supported by your design. Because each
description identifies a representative user, you can separate these into user types. While
you want to be careful not to over-stereotype people, you will likely find that some of the
groups are clearly separate, with quite distinct needs and goals. In a store setting, for
example, this could be store customers vs sales clerks. As well, you may find that some
users differ considerably from each other, even though the tasks they wish to accomplish
are similar. You may find people with different levels of computer experience, or with
different levels of knowledge and experience of the actual task. You should go through
the list and make some hard decisions about who to include in your system design, as
follows.

1. Absolutely must include. The system design must support these user types. They are
the basic audience, and leaving them out would seriously undermine the purpose of
entire system.

2. Should include if possible. These user types are of lesser importance or are perhaps
somewhat atypical. The system design should strive to accommodate them if possible.
However, it is acceptable if they must do somewhat more work to use the system, or if
they are excluded altogether (perhaps because other workarounds exist), or if their
inclusion is deferred to the next system release.

3. Exclude. These user types are rare, or unimportant, or quite different from the core
users, or cannot be justified from a cost perspective, or have workarounds where they
do not need the system. While these users may be able to use the existing system, the
system design should not go out of its way to accommodate them.

B. Deciding which Tasks to Include

Similarly, you need to identify what tasks will be handled efficiently and effectively by
your design. Because each description is task-centered, you can order the task
descriptions by the following criteria.

1. Absolutely must include. These are key tasks, and identify the essential things that
people would do with the system. They are typically frequent and important tasks.

2. Should include if possible. These tasks should be included if budget and time permits.
While still important, they are perhaps somewhat rarer. If they are not included in
version 1 of the system, they should be included in version 2.

3. Could include. These are lesser tasks that could be supported by the system, but only
if it can be included in the design almost ‘for free’. That is, if the necessary features
can be easily added without impacting the rest of the interface, or if the task can be
accommodated simply by the way the system supports the other tasks, then it can be
included.

4. Exclude. These tasks are unimportant and/or so rare that no effort should be made to
include them into the system.

Working Through Task-Centered System Design - 6 - Saul Greenberg

Phase III. Design through Scenarios
With the descriptions and requirements in hand, you can now start thinking about the
interface design. Each description creates the character and plot of a story. You generate
design possibilities by exploring how specific designs support the telling of this story.
Each design should consider how its features work together to help a person accomplish
their real work. Each design should account for the expected user knowledge and
motivation, where it takes into consideration the real world contexts of real users
(Carroll, 2000).

As design ideas unfold, you can judge and quickly modify your interface by seeing
how well it supports the story told by your core set of user/task descriptions. That is, you
can perform an ‘in the small’ task-centered walkthrough (discussed in Phase 4) to see
how well your interface and its features support particular user types and tasks.

Phase IV. Evaluate via Task-Centered Walkthroughs
A usage scenario combines an interface design with one of your user/task descriptions.
In this phase, you choose a scenario and perform a task centered walkthrough of it
(Nielson and Mack 1994). With a walkthrough, you tell a concrete story about what a
particular user would do and see step-by-step when performing his or her particular task
on the interface (Carroll, 2000).

Walkthroughs are an excellent and low-cost way to evaluate your interface, for you
will quickly discover trouble spots as you move through the task. At its cheapest, you
can do it by yourself, with no need for end-user involvement. However, walkthroughs
tend to produce richer results when they are performed with others on your team,
particularly if other members have perspectives that differ from yours e.g., designers,
implementers, and end-users (Bias, 1994).

Lewis and Rheiman’s algorithm for performing a task-centered walkthrough is
surprisingly simple and easy to do.

Select one of the task scenarios
For each of the user’s step/action in the task:

Can you build a believable story that motivates the user’s actions?
Can you rely on user’s expected knowledge and training about system?
If you cannot:

You have located a problem in the interface
Note the problem and any comments or solutions that come to mind

Once a problem is identified, assume it has been repaired
Go to the next step in the task

To make this walkthrough algorithm work effectively, you must put yourself in the
mind and context of the end user. You are essentially role-playing. You must stay true to
the spirit of what the person is trying to accomplish, what they know, and what is
reasonable for them to do. The story you tell must be complete and must ring true. The

Working Through Task-Centered System Design - 7 - Saul Greenberg

story should start at the very beginning of the task, perhaps even before the person
touches the computer. For each expected step in the task as prescribed by the interface
design, you have to ask if the person will know what they have to do next, whether they
will know how to use the interface controls to do it, and whether they can comprehend
the feedback provided by the system. You should continue through the task to the bitter
end, even when you discover that your design is so terrible that it should be abandoned.
This is because the other problems you see may help you avoid them in successive
designs, and may even give you insights into new designs.

A Working Example: Cheap Shop
This sections steps through a working example to illustrate how this process can be
applied.

The Situation

Cheap Shop is a catalog-based department store known for its low cost merchandise. A
customer shops by browsing one of the paper catalogs scattered around the store. As the
customer finds each desired item, he or she enters its item code from the catalog onto an
order form. The customer then gives this form to a sales clerk at the front counter. After a
modest time (about 3-8 minutes), the warehouse clerk delivers the items from the back
room to the sale clerk at the front counter. The sales clerk passes it to the customer. The
customer checks the items, and pays the sales clerk for the items they want. An example
item for the catalog as well as a filled in form is illustrated in Figure 1.

Cheap Shop has contracted you to evaluate an in-store computer system that they have
prototyped, where customers would use this prototype system to indicate and buy the
items they want. The system would then send this request to the warehouse, after which
the items will appear at the front counter for further processing by a clerk.

If the prototype has major problems, you can either suggest how it can be repaired or
propose a completely new design.

JPG Stroller. This well
made but affordable
Canadian stroller fits
children between 1-3
years old. Its wheels roll
well in light snow and
mud.

 …$98.

Red: 323 066 697
Blue: 323 066 698

 Item code

Amount

Figure 1a: The catalog entry for the Figure 1b: The filled-in order form
stroller for the stroller

Working Through Task-Centered System Design - 8 - Saul Greenberg

The Cheap Shop Prototype

The prototype illustrated in Figure 2 is intended to be available on all Cheap Shop
Department Store computers. Shoppers in the store decide on the item they want by
browsing the catalog, and can then purchase items by entering the relevant information
into these screens.

Screen 1

Screen 2

Prototype specifications.
To order the first item:
o shoppers follow the sequence on screen 1 to enter their personal information and their first order;
o text is entered via keyboard, and the tab or mouse is used to go between fields.

To order additional items:
o shoppers fill in screen 2 after clicking Next Catalog Item (can be repeated).

To complete an order:
o shoppers click ‘Trigger Invoice’;
o the system automatically tells shipping and billing about the order;
o the system returns to a blank screen #1.

To cancel the order:
o shoppers do not enter input for 30 seconds (as if they walk away);
o the system will then clear all screens and return to the main screen.

Input checking:
o all input fields checked when either button is pressed;
o erroneous fields will blink for 3 seconds, and will then be cleared;
o the shopper can then re-enter the correct values in those fields.
Figure 2: The Cheap Shop Prototype

Working Through Task-Centered System Design - 9 - Saul Greenberg

Producing User and Task Descriptions for Cheap Shop

We collected descriptions by monitoring customer activity at the Cheap Shop store.
We validated each description by interviewing the customer and by asking them if it
reflected what they did. We also sat behind the counter with the store clerks, where we
observed what they did and how customers and clerks talked to each other. Later, we
gave the complete set of descriptions to the store clerks (the client representative) and
asked them if the descriptions typified what they saw in terms of customer requests.
Three of our descriptions are included below. Notice that they follow the criteria for good
task descriptions identified earlier.

Task 1. Fred Johnson, who is caring for his demanding toddler son, wants a good quality
umbrella stroller (red is preferred, but blue is acceptable). He browsers the catalog and
chooses the JPG stroller (cost $98., item code 323 066 697). He pays for it in cash, and
uses it immediately. Fred is a first-time customer to this store, has little computer
experience, and says he types very slowly with one finger.

Discussion. Fred has many properties of our typical expected user: many customers
are first time shoppers, and a good number have no computer experience and are poor
typists. Similarly, the task type is routine and important. Many people often purchase
only one item, and a good number of those pay by cash. As with Fred, people often have
a general sense of what they want to buy, but decide on the actual product only after
seeing what is available.

Task 2. Mary Vornushia, an elderly arthritic woman, is price-comparing the costs of a
child’s bedroom set, consisting of a wooden desk, a chair, a single bed, a mattress, a
bedspread, and a pillow all made by Furnons Company. She takes the description and
total cost away with her to check against other stores. Three hours later, she returns and
decides to buy everything but the chair. She pays by credit card and asks for the items to
be delivered to her daughter’s home at 31247 Lucinda Drive, in the basement suite at the
back of the house.

Discussion. Like Mary, a reasonable number of store customers are elderly, with
infirmities that inhibit their physical abilities. A modest number of them also enjoy
comparison shopping, perhaps because they have more time on their hands or because
they are on low income. Although this would be considered a ‘major’ purchase in terms
of the total cost, the number of items purchased is not unusual. Delivery of large items is
the norm, and many customers pay by credit card for larger orders.

Task 3. John Forham, the sole sales clerk in the store, is given a list of 10 items by a
customer who does not want to use the computer. The items are: 4 pine chairs, 1 pine
table, 6 blue place mats, 6 “lor” forks, 6 “lor” table spoons, 6 “lor” teaspoons, 6 “lor”
knives, 1 “tot” tricycle, 1 red ball, 1 “silva” croquet set. After seeing the total, the
customer tells John he will take all but the silverware, and decides to add 1 blue ball to
the list. The customer starts paying John by credit card, but then changes his mind and
decides to pay cash. The customer tells John he wants the items delivered to his home the

Working Through Task-Centered System Design - 10 - Saul Greenberg

day after tomorrow. While this is occurring, 6 other customers are waiting for John. John
has been on staff for 1 week, and is only partway through his training program.

Discussion. This task introduces the clerk as a system user. While every store will
have a few clerks, they are vastly outnumbered by the number of customers using the
system. Because the store has a high turnover in its staff, new employees such as John are
also common. Thus John reflects a ‘rare’ but important group of users. The task that John
is asked to do by the customer, while complex, is fairly typical i.e., people making large
numbers of purchases often ask the clerk to help them. Similarly, clerks mention that
customers often change their mind partway through a transaction i.e., by changing what
they want to buy and/or by changing how they want to pay for it. Customers, however,
rarely give specific delivery dates, with most wanting delivery as soon as possible.
Lineups for clerks do happen during busy times.

The Task Walkthrough.

Because we already have an interface in hand, we begin by performing a task centered
walkthrough of it. The example below shows our walkthrough analysis performed with a
scenario that combines our first task description with this interface.

For reporting purposes, each walkthrough report is preceded by a description of the
scenario i.e., which task description and which interface is being analyzed. The table
itself tells the story, where it records the step-by-step results of the task walkthrough
algorithm. The 1st column describes each task step in sequence. The 2nd column asks if
that person has the knowledge or training to do this step, and if it is believable that the
person would be motivated to do what is asked of them. The final column records
problem details, comments, and (optional) solutions to any problems.

Interface: Cheap Shop prototype #1.
Description #1. Fred Johnson, who is caring for his demanding toddler son, wants a good
quality umbrella stroller (red is preferred, but blue is acceptable). He browsers the
catalog and chooses the JPG stroller (cost $98., item code 323 066 697). He pays for it in
cash, and uses it immediately. Fred is a first-time customer to this store, has little
computer experience, and says he types very slowly with one finger.

The sequence in Table 1 illustrates the value of starting the walkthrough at the very
beginning of the task. Notably, we see that we are missing information about whether
paper or electronic catalogs will be used, how the computerized system is situated in the
store environment, and whether signage or other instructional material will tell customers
what to do. While doing task centered design, you should examine what information is
missing, and list what assumptions you are making. You should validate these
assumptions, as incorrect ones can profoundly affect how the interface will perform in
the actual setting. Even when assumptions reveal issues 'outside' the actual interface
being designed, they can be critical to its success.

Working Through Task-Centered System Design - 11 - Saul Greenberg

Task step Knowledge?
Believable?
Motivated?

Comments/solutions.

a Enters store ok

b Looks for
catalog

Ok if paper
catalog is used,
but what if the
catalog is on-line?

Finding paper catalogs is not a problem in the current store.
However, we were not told if the paper catalog would still be used,
or if the catalog would be made available on line.

Note: ask Cheap Shop about this. If they are developing an
electronic catalog, we will have to consider how our interface will
work with it. For now, we assume only a paper catalog is used.

c Finds red
JPG stroller
in catalog

Ok The current paper catalog has proven itself repeatedly as an effective
way for customers to browse Cheap Shop merchandise and to locate
products.

d Looks for
computer

Modest problem As a first time customer, Fred does not know that he needs to order
through the computer. Unfortunately, we do not know how the store
plans to tell customers that they should use the computer. Is there a
computer next to every catalog (so its association can be inferred),
or are there limited number of computers on separate counters? Are
there signs telling Fred what to do?

Note: ask Cheap Shop about the store layout and possible signage.
Possible solution: Instead of screen 1, a startup screen can clearly
indicate what the computer is for e.g., “Order your items here” in
large letters.

Table 1: From entering the store to finding the computer

The next sequence in Table 2 illustrates fundamental problems that arise as one walks
through task step details, such as how Fred selects and moves between fields, and how
Fred enters input. It also illustrates how the inspector can do a reality check on
walkthrough steps in the large i.e., whether the expected sequence of activities matches
Fred’s goals, and whether Fred is willing to enter the expected information. In this case,
we see several serious problems that must be repaired.

e Enters name No motivation to
do this!

Fred’s task is to buy the stroller, but the scenario shows that the
system is asking him for his name. Fred may be reluctant to do so if
(say) he believes that he will be added to a mailing list without his
permission.

Note. Ask Cheap Shop why they are asking for the customer’s name
and other contact information.

f Selects the
name field

Knowledge
lacking. Fred does
not know how to
select a field.

To enter his name, Fred is expected to click and type into the first
text field on this form. Yet Fred has little computer experience, and
thus he may not know what to do. He may also be reluctant to
experiment with the system.

Possible solutions:
a) have the first field pre-selected, with the cursor in it.
b) have a poster next to the computer describing these basic acts.

Working Through Task-Centered System Design - 12 - Saul Greenberg

g Types his
name

Knowledge
lacking: Fred
types poorly, does
not know name
format.

Because Fred types poorly, text entry will be slow and tedious. This
further dampens Fred’s motivation, as he is entering information that
is unimportant to the task.

Fred is uncertain about formats: does he type his name as ‘Fred
Johnson’ or ‘Johnson, Fred’?

h Moves to
phone field

Knowledge
lacking

Fred may not know how to tab or mouse over to the next field
because of his unfamiliarity with computers.

i Fill in
phone,
postal code,
province,
and city.

Poor motivation.
Poor format
knowledge

If Fred can complete steps e-h, he will be able to continue with the
following fields. However, motivation will decrease even further as
Fred painfully types unnecessary information into the system.

Fred continues to have formatting concerns about how he should
enter information. Should the phone number include the area code,
spaces and/or dashes? Should he spell out the province or use the
abbreviation? Should he leave a space in the postal code?

j Enter
delivery
address

Violates the task Fred will use the stroller immediately, but the system asks for his
delivery address. Fred may incorrectly assume that he is filling in
the wrong form, and may give up.

We also noticed that the order of the contact information does not
follow the typical flow i.e., one would expect ‘Name, Address, City,
Province, Postal Code’, ‘Phone’ rather than the odd order shown in
the form.

k Enters
today’s date

No motivation This is an odd field… why should Fred enter the date when the
system already knows it? Can he skip it? If he does fill it in, he
would be quite lucky to enter a recognizable date format.

l Enters credit
card
information

Violates the task Fred is paying by cash, and thus he is unwilling enter his credit card
number. He is also concerned that others may see his credit card
information as he types it onto the screen. Finally, this seems an odd
place to ask for payment information. Most stores ask for it at the
end of transaction, not at the beginning.

m Ignore
 validation
id

Ok While Fred will likely do the right thing, this field should not be
here. It has nothing to do with Fred’s task.
Possible solution. Remove it.

Steps e-m Not needed for
task.

Possible solution. This entire part of the interface is not needed or
is, at best, optional (e.g., if it is for getting onto the mailing list).
Delete it entirely or move it into a very secondary area that can be
filled in after the transaction is completed.

Table 2: Entering personal information

The task steps in Table 3 illustrate how poorly the interface handles the most critical
part of the task, where Fred specifies the item he wants to buy, and tries to complete the
transaction. We also see that the interface is full of jargon and unneeded or poorly
designed interface components.

Working Through Task-Centered System Design - 13 - Saul Greenberg

n Enter item

number for
the JPG red
stroller

Is motivated, but
has problems.
Error-prone.

The item number for Fred’s stroller is written in the paper catalog as
323 066 397. Because catalogs are common, he may be able to
figure out what he has to do. However, the format is a bit mysterious
– should he include spaces or not?

If the paper catalog is in an awkward place, Fred will have to rely on
his memory to enter the number or he will constantly be running
back and forth between the catalog and the computer.
Because Fred is a poor typist, he may have difficulty typing the
number correctly.

o Enter
quantity

Knowledge low,
motivation high

Fred wants one stroller only. However, this ‘spinner widget’ is
somewhat mysterious to Fred. Because he does not know computers,
he will likely not know that he can type the amount directly or just
click the arrows to select the quantity.

Partial solution. Have the spinner show a 1 by default.

p Enter
cost/item

Motivation low Why should Fred enter the cost? Surely the system knows this. If
this field is actually used to display the cost, then it has the wrong
visual affordance as it looks like a text box.

Perhaps Fred would be willing to enter a deeply discounted cost, but
this will probably be treated as a system error.

q Enter total Motivation low See above point

r Enter
balance
owing

Motivation low,
knowledge low

See above point.
Fred will also be uncertain about how this field differs from the
‘Total’ field.

s Click
Trigger
invoice or
press PF5

Knowledge low Being inexperienced with computers, Fred may not recognize or
know how to use a clickable button. The ‘PF5’ label is also
mysterious, as Fred does not recognize it as a keyboard shortcut.
Fred will find the meaning of ‘Trigger Invoice’ cryptic, as it is in the
language of the database system rather than in his language. This
may leave him at a loss of what to do.

Possible solutions. Remove the PF5 label. Change ‘Trigger Invoice’
to something more meaningful.

Table 3: Buying the stroller

As with the opening task sequence in Table 1, the sequence in Table 4 illustrates how
the closing of the task must recognize factors that go beyond the interface. In this case,
we see a serious problem of how the electronic part of the task flows through to the
physical completion of the task.

Working Through Task-Centered System Design - 14 - Saul Greenberg

t Wait for
item at sales
counter

Knowledge low,
motivation high

Fred has to go to the sales clerk and wait for the item to appear. Yet
he may not know this, especially because the computer returns to the
initial empty screen. Has the transaction completed successfully? Is
there signage that says what has to happen?

Possible solution. Provide a final screen that tells Fred what he has
bought and what he has to do next.

u Get item
from Sales
Clerk.

Knowledge low,
motivation high

If other items are appearing aside from Fred’s, he may not know
which items are his unless the boxes are clearly labeled or if the box
size and shape give it away. Similarly, the sales clerk has no easy
way to identify whose items have appeared, unless the name given
in the Name field is somehow attached to the items.

Possible solution. After completing Trigger Invoice, the system
could print out a sheet listing the chosen items which Fred can then
give to the sales clerk.

v Pay for item
in cash

Ok While this is straight-forward, there is a question about how the
clerk will tally up this bill. This is the clerk’s problem, but we don’t
want Fred to wait excessively.

w Use it
immediately

Ok

Table 4: Picking up the stroller and paying for it

The above sequences in Tables 1-4 walk through the correct task sequence. What
happens when errors or other events occur that disrupt this sequence? Table 5 illustrates a
set a sequences dealing with problems. It shows that walkthroughs are also effective for
discovering how the system design deals with problems, and with events arising from the
end-user's real-world context.

1 Event: interruptions and timeout.
a Deal with

toddler
Knowledge high,
motivation high

Fred’s toddler starts demanding his attention part way through this
task (say after he has entered the item number). Fred comforts his
child.

b Deal with
timeout

Knowledge low,
motivation low

Unfortunately, this took more than 30 seconds, which means that the
system has cleared the screen. Fred has to re-enter all this
information, which he will likely not do. Note that a similar problem
will happen if Fred lingers too long on any step in this task.

2 Error: incorrect item number
a Recognize

error
message

Knowledge low If Fred enters an incorrect item number, the system will blink that
field for 3 seconds and then clear it. It is extremely unlikely that
Fred will know what this means.

b Enter
corrected
item number

Knowledge low,
motivation
medium

Even if Fred realizes that he has made a mistake entering the item
number, he will be uncertain about what he did wrong (since the
number is no longer there), or how to correct it.

3 Event: red stroller unavailable
a No red

stroller is in
stock

Knowledge low If there is no red stroller in stock, how does Fred find this out? Will
the sales clerk tell him (in which case the clerk needs to identify
Fred)?

Working Through Task-Centered System Design - 15 - Saul Greenberg

b Reenter all
information
for blue
stroller

Motivation low We cannot imagine that Fred would be willing to go through this
whole process again, especially because his demanding toddler is
likely loosing patience.

Possible solution: As the customer selects and item, the interface
should clearly indicate if it is in stock.

Table 5: Interruptions, errors, and exceptions

While Tables 1-5 appear fairly detailed, they do not cover all task steps. Some steps
are intentionally left out because they are identical to previously seen task steps. For
example, after identifying problems with selecting and moving between fields as well as
typing (steps f-h in Table 2), these details are skipped in other task steps. Other steps are
left out because of oversights i.e., they simply were not thought about. For example, no
mention is made in Table 5 about how the customer or clerk unpacked the box the stroller
came in, or what was done with it afterwards. While oversights will happen, they can be
reduced by adding more people to the team and by grounding the task by real
observations. For example, videotaping a person doing a real task forces one to account
for all visible steps.

Walkthroughs of the interface using the other two descriptions yield other problems.
For the second description, we identify a user (Mary) who cannot use the mouse or type
because she is arthritic. What should be done with her? We also see serious problems
when multiple items are ordered; the system gives no feedback of what was entered, and
there is no way to correct errors without re-entering everything from scratch. There is
also no easy way for Mary to price-compare (since no printout is provided), nor is there
any way for her to recall information that she previously entered. Details are also a
problem: there is no easy way for her to tell the system about the unusual delivery
address (i.e., that it is the basement in the back). For the third description, we see that the
system is completely unsuitable for use by the store clerk. Item entry is too slow, and the
clerk will not be able to keep up with the changes requested by the customer. This
slowness also affects other customers waiting in line. We also see that the system cannot
accommodate delayed delivery.

The bottom line is that this design is a disaster, and it should be completely revamped.

Determining User-Centered Requirements

Before redesigning the interface, we revisited the descriptions and made decisions on
which users and tasks should be supported by the design. We split the main user types
and tasks into the following categories and dimensions.

Working Through Task-Centered System Design - 16 - Saul Greenberg

Customers:
• first time vs repeat customers
• computer knowledgeable vs computer

naïve
• typists vs non-typists
• willing vs unwilling to use the computer
• people with disabilities who may have

trouble with fine motor control
Sales clerks:
• experienced and trained
• new staff member; has passed

introductory training session
…

Choosing merchandise
• one item
• multiple items
• modifying the selected list of items
Pay by
• cash
• credit or debit card
• invoice
Reviewing cost
• individual item cost
• total costs
• comparison shopping
Merchandise pick-up
• immediate
• delivery
…

Table 6 Categories of user types and tasks

In terms of user types, we decided that the system design must include first time and
repeat customers who are computer-knowledgeable and who are willing to use the
computer. These make up a large customer base, and they have skills that should allow
them to use the system with minimal effort. The requirements should also include
customers who are computer naïve and who are non-typists, for these too are also a large
part of the customer base. However, the system can exclude those who may have
disabilities that interfere with their ability to enter their data in the system; those people
are fairly rare, and they can simply ask the sales clerk to help them. We also recommend
that a different system be designed for sales clerks, because their needs are unlike those
of typical customers.

In terms of tasks, the system design requirements must let people choose and easily
modify a list of merchandise comprising at least one to seven items, where they can
quickly determine the individual and total cost. They should be able to pay by cash,
credit or debit card, and take the merchandise away with them. These are all important
and very frequent tasks that customers do. The system should also let people buy more
than seven items, although this can be deferred as the large majority of people buy seven
items or less at Cheap Shop. The system could include the ability to let people
comparison shop (e.g., by printing out the screen) or retrieve previous orders. The system
can exclude delivery or payments by invoice as these are fairly rare and are best handled
by the sales clerk.

Working Through Task-Centered System Design - 17 - Saul Greenberg

Interface Design.

From these requirements and from our knowledge of the problems detected in our
walkthrough, we prototyped the interface illustrated below (this non-functional prototype
was created in about 45 minutes).

Figure 3a: The initial screen of the new prototype

Figure 3b: The filled in screen

Working Through Task-Centered System Design - 18 - Saul Greenberg

It differs considerably from the previous version. Because people may not know how to
type or use a mouse, we use only a bar code reader and a touch screen for input. Paper
catalog descriptions of items will be modified to include bar codes. A ‘getting started’
instructional poster is located next to the computer (not shown) that pictorially tells
people how to use the bar code reader, and that tells them the sales clerk would gladly
help them if they have any problems. Because we want this system to let people easily
select and purchase just a few items (perhaps changing their mind on the way), the
interface portrays itself as a dynamic shopping list. Because people may be unfamiliar
with the system, context-sensitive on-screen instructions prompts the user every step of
the way. To illustrate how this works, we briefly revisit the first task in the two screen
snapshots illustrated in Figure 3. In the initial screen, the ‘wizard” tells Fred how to add
an item to the shopping list. Fred complies and finds his stroller in the catalog and scans
the bar code next to it. The 2nd screen shows the result: a picture of the stroller, its
description and its cost appears, and it is automatically added to the shopping list.
Because the stroller comes in several colors, the wizard tells Fred he can change the
current color (chosen by default) by touching the color he wants (this would
automatically modify the shopping list). Fred wanted a red stroller, but sees it is out of
stock so he leaves it as blue. At this point, the system lets the customer scan in other
items, or delete or modify items already in the list by touching the appropriate button
located at an item’s right. If the modify button is touched, the item reappears in the
“What you selected” box. Fred just wants the stroller, so he touches the ‘Place your
order’ button at the bottom. A copy of the shopping list prints out (including its own
unique bar code) and the wizard tells Fred to give it to the sales clerk at the front counter
(not shown). The clerk takes the order from Fred, and uses it to collect the items as they
appear from the warehouse. Fred is ready to pay by cash, so the clerk displays the order
on his screen by scanning the barcode on the printout and processes it through his own
system.

This prototype should handle other tasks as well. For the comparison shopper in
Description 2, she can choose to print the list: in this case the printout appears but the
order is not placed. If the shopper comes back later to order the items, she simply scans
the barcode on the printout, which puts her shopping list back onto the screen
(instructions on the form tell them that they can do this). We are still uncertain if she can
do this because of her arthritis, but it could be possible with mild cases.

While we created this solution to address some of the problems identified in the task
analysis, we don't really know how good these fixes are. We do know that major
redesigns such as this one will likely introduce new problems, both large and small!

Thus we go back to the beginning of our task walkthrough process. However, it is now
your turn. Does this interface work? Do a detailed task-centered walkthrough to discover
where it succeeds and where it fails. There are certainly flaws in it!

Working Through Task-Centered System Design - 19 - Saul Greenberg

Conclusions
Task-centered system design is a very effective discount usability engineering method
suitable for many interface development problems. It offers a big ‘bang for the buck’,
where you can probably achieve a reasonable design with only modest extra effort. The
caveat is that it is not perfect. Compared to other more precise techniques, you will likely
miss a task or user group, or you may overlook a task nuance during the walkthrough. I
would not use TCSD to design an air traffic control system, but I would use it if I had to
produce a non-critical system under a limited budget. I would also supplement it with
other evaluation techniques, such as heuristic evaluation (Nielsen and Mack, 1994) and
user testing (Dumais and Redish, 1993).

This chapter is sufficient to get you started on your own task-centered system design
project. If this method excites you, you should also read Lewis and Reiman’s book on the
topic (1993). They go into further detail, and describe how the TCSD method relates to
other aspects of interface design and evaluation.

There are other good sources on related information. Beyer and Holtzlatt (1998)
describe the contextual interview, which is an excellent way to discover detailed user and
task descriptions. Carroll (2000) goes into great detail on scenario-based design. Cooper
(1999) presents a variant on TCSD called goal-centered system design. Nielsen and
Mack (1994) collects readings about other discount interface inspection methods. Finally,
my own teaching materials on this topic are available at
www.cpsc.ucalgary.ca/~saul/hci_topics/topics/tasks.html. Materials include PowerPoint
presentations, student assignments, and teaching tips.

Acknowledgments. The National Sciences and Engineering Research Council of Canada (NSERC)
provided funding. This material has been refined over years of teaching University of Calgary
undergraduate students; I owe them my gratitude.

References
Beyer, H. & Holtzblatt, K. (1998) Contextual Design: Defining Customer-Centered Design. Morgan-

Kaufmann.
Bias, R. (1994) The Pluralistic Usability Walkthrough: Coordinated Empathies. in J. Nielsen & R. Mack

Usability Inspection Methods, pp.63-76, John Wiley, 1994.
Carroll, J. (2000) Making Use: Scenario-Based Design of Human-Computer Interactions. MIT Press.
Cooper, A. (1999) The Inmates are running the Asylum: Why High-tech Products Drive Us Crazy and

How to Restore the Sanity. SAMS.
Dumas, J. & Redish, J. (1993) A Practical Guide to Usability Testing. Ablex.
Lewis & Reiman (1993) Task Centered User Interface Design: A Practical Introduction. University of

Colorado, Boulder. Shareware book available from ftp.cs.colorado.edu/pub/cs/distribs/clewis/HCI-
Design-Book/.

Nielsen, J. & Mack, R. (1994) Usability Inspection Methods, John Wiley & Sons.

